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ABSTRACT: This paper discusses the relevance of precise measurements for the evaluation of the development and optimization process 

of the powertrain, or individual powertrain components, of electric vehicles in the context of measurement uncertainty (MU). It presents 

an innovative fiber-optic measurement technology that combines a sufficiently high bandwidth with a comparatively low MU. In addition 

to an introductory overview of the measurement technology used, the estimation of MU is examined in detail. In this context, the 

propagation of the MU of electrical measurands to relevant optimization parameters, such as active power, energy and efficiency, is 

analyzed. For this purpose, a time-discrete MU propagation is used, which considers the digital calculation algorithms implemented on 

modern power analyzers. In contrast to numerous established methods for estimating the MU of electrical power, energy and efficiency,

this approach can also be used for non-sinusoidal voltages and currents, as they occur in converter-fed drives.
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1. INTRODUCTION

With the continuous worldwide growth in electromobility, the 

requirements for energy storage capacity and efficiency, as well as 

the resulting range of electric vehicles are also increasing. For this 

reason, efficiency is a central optimization criterion during the 

development process of a modern electric vehicle for maximizing 

its range. The development steps to be taken for this purpose, for 

example the use of suitable low-loss power converter and machine 

topologies, but also the optimization of the power converter 

control algorithms, are constantly being further developed and 

validated by measurements. For this reason, the correct 

interpretation of the measurement results is of utmost relevance 

for the quantitative evaluation of the development process and the 

assessment of development goals.  

To meet these challenges, this paper presents a suitable fiber-

optic measurement technology that combines a sufficiently high 

bandwidth(1,2) for measuring converter-fed drives with a 

comparatively low measurement uncertainty (MU). However, 

since every real measurement is associated with a certain MU, the 

transfer of the MU from electrical measured quantities to 

parameters calculated from them is derived in this context. For 

example, a MU of the measured voltages and currents propagates 

to a MU of the power and thus also of the energy consumption and 

ultimately of the range of a vehicle. The range of a vehicle is 

typically specified conservatively, considering the existing MU. If 

the MU of the measured quantities can be reduced, the specifiable 

range of this vehicle increases accordingly. This fact highlights the 

importance of measurement uncertainty in EV optimization. The 

reduction of MU can be achieved by a more detailed evaluation 

based on knowledge of the sensor properties and the measurement 

technology used. Therefore, the underlying signal processing 

algorithms of the power analyzer should be considered for the MU 

propagation. In this context, this paper presents a discrete-time 

MU estimation of power, efficiency that correctly accounts for the 

digital computation methods of these quantities on modern power 

analyzers.

2. MEASUREMENT OF THE ELECTRIC POWER TRAIN

2.1. Measurement Topology

Fig. 1 shows the basic system topology of an electric drive train

together with a tailored, optimized measurement technology. The

electric machine is supplied with power from a power source (e.g. 

battery) via a power converter. In order to measure essential 

optimization parameters such as efficiency or power loss, robust, 

reliable and highly precise measurement technology is required. In 

the case of converter-fed drives, the bandwidth of the sensors and 
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the sampling rates of the measuring instruments must be 

sufficiently high to correctly measure the influence of the 

switching frequency(1,2). On the other hand, the measurement 

results should have the lowest possible measurement uncertainty.

Fig. 1  Measurement Topology of an Electric Power Train

To fulfill these requirements, the measurement topology shown 

in Fig. 1 is used. The centrally located raw data acquisition system

(power analyzer) measures all physical quantities that are relevant 

for optimizing the individual powertrain components and the 

entire powertrain in a time-synchronized manner. These include 

electrical quantities such as currents and voltages, but also the 

mechanical quantities of the drive shaft, i.e. speed, torque, as well 

as other system parameters, such as temperatures, accelerations, 

vibrations, acoustic signals and field buses, etc. Fiber optic probes 

are used to measure the electrical quantities. These are 

significantly more robust against unwanted EMC influences, 

especially in power converter operation. The fiber-optic galvanic 

isolation of the measuring system ensures a high level of personal 

and device protection, especially at high battery voltages and in 

the event of a fault. For long transmission paths, the signal 

propagation times are synchronized so that no unwanted phase 

shifts between individual signals occur.  

In terms of current measurement, fluxgate compensation current 

transformers represent a very suitable compromise between 

sufficient bandwidth from DC to a few 100 kHz and, at the same 

time, a comparatively low MU. Compared to shunts, they have the 

great advantage that they are galvanically isolated from the circuit 

to be measured. Shunt measurements are often associated with 

common-mode interference, since very small differential voltages 

have to be measured on a very high and dynamically variable 

potential. 

The measurement topology presented in Fig 1 can also be 

applied in an analogous approach to more complex and extensive 

applications, such as an electric vehicle, as shown in Fig. 2.

Fig. 2  Testing of an Electric Vehicle

2.2. Electric Power Measurement

Measuring the electrical power is essential for determining loss, 

energy, and efficiency of the power train components. The power 

exchange is calculated from the measured terminal voltages and

conductor currents. The electrical system to be measured can be a 

two-wire system, for example the battery of a vehicle, or a multi-

phase system, such as a three-phase machine as a drive. In general, 

from an electrical point of view, the generic 𝑛𝑛𝑛𝑛-wire system in 

Fig. 3 is therefore considered, where 𝑛𝑛𝑛𝑛 𝑛 2 corresponds to the 

number of conductors contributing to the energy transfer of system. 

Fig. 3  Electrical n-wire system (based on (2) referring to (5,6))

It is well-known from standards(3,4) and scientific literature(5,6),

that the instantaneous power 𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡) as a function of time t is given 

as the sum of products of a respective conductor current 𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡),

with 𝜈𝜈𝜈𝜈 𝜈 {1, … ,𝑛𝑛𝑛𝑛} , and the associated phase voltage 𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡)

measured against an arbitrarily selectable common reference 

potential 𝑟𝑟𝑟𝑟. 

𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡) = �𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡) ∙ 𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡)
𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈=1

[1]



EVTeC 2025 
7th International Electric Vehicle Technology Conference 2025 

Copyright © 2025 Society of Automotive Engineers of Japan, Inc. 

Integrating the instantaneous power within the time interval Δ𝑡𝑡𝑡𝑡,

we obtain the related energy 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) transferred. 

𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = � 𝑝𝑝𝑝𝑝(𝜏𝜏𝜏𝜏)
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡−Δ𝑡𝑡𝑡𝑡

 d𝜏𝜏𝜏𝜏 [2]

In the case of periodic signals in a steady state, so that 

𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡 + 𝑇𝑇𝑇𝑇) = 𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡) and 𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡 + 𝑇𝑇𝑇𝑇) = 𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡), the active power is 

obtained as the mean value of the instantaneous power over the 

associated period T of the voltages and currents. The active power 

is therefore a measure of the average energy flow rate per period: 

𝑃𝑃𝑃𝑃 =
1
𝑇𝑇𝑇𝑇 � 𝑝𝑝𝑝𝑝(𝜏𝜏𝜏𝜏)

𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡−T

 d𝜏𝜏𝜏𝜏 [3]

The efficiency 𝜂𝜂𝜂𝜂 of a system is defined as the ratio of the 

active power output 𝑃𝑃𝑃𝑃out to the active power input 𝑃𝑃𝑃𝑃in: 

𝜂𝜂𝜂𝜂 =
𝑃𝑃𝑃𝑃out
𝑃𝑃𝑃𝑃in

[4]

The power loss 𝑃𝑃𝑃𝑃loss is given by: 

𝑃𝑃𝑃𝑃loss = 𝑃𝑃𝑃𝑃in − 𝑃𝑃𝑃𝑃out [5]

The parameters in equations [1] to [5] are essential for 

characterizing the effectiveness of all components of the electric 

powertrain and for the efficiency of the electric vehicle. When 

optimizing a powertrain during the development process of a 

vehicle, it is therefore essential to know the MU of the individual 

parameters in order to evaluate the development progress and the 

achievement of the development goals and specifications.

3. MU OF RELEVANT SYSTEM PARAMETERS

3.1. Continuous-time MU Propagation 

Assuming that the time-dependent MUs of the 𝑛𝑛𝑛𝑛 phase voltages 

𝑢𝑢𝑢𝑢(𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡)) and the 𝑛𝑛𝑛𝑛 phase currents 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡)), as well as the MU of 

the period 𝑢𝑢𝑢𝑢(𝑇𝑇𝑇𝑇) are known from datasheets or calibration 

certificates, the propagated MU of the active power is estimated 

by the Gaussian MU propagation(7): 

𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃) =

⎷
⃓⃓
⃓⃓
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𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡) ∙ 𝑢𝑢𝑢𝑢�𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈

(𝑡𝑡𝑡𝑡)��
2𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

+ ⋯

+��
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡) ∙ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝜈𝜈𝜈𝜈
(𝑡𝑡𝑡𝑡)��

2𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

+ ⋯

�
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𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 ∙ 𝑢𝑢𝑢𝑢

(𝑇𝑇𝑇𝑇)�
2

[6]

Based on [1], [3] and [6], we obtain the partial derivative of the 

active power with respect to the 𝑚𝑚𝑚𝑚-th terminal voltage 

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃
𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡) =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡)�

1
𝑇𝑇𝑇𝑇 ��𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝜏𝜏𝜏𝜏)𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈(𝜏𝜏𝜏𝜏)

𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈=1

𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡−𝑇𝑇𝑇𝑇

 d𝜏𝜏𝜏𝜏� [7]

and the partial derivative of the active power with respect to the 

𝑚𝑚𝑚𝑚-th conductor current: 

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡)�

1
𝑇𝑇𝑇𝑇 ��𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝜏𝜏𝜏𝜏)𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈(𝜏𝜏𝜏𝜏)

𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈=1

𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡−𝑇𝑇𝑇𝑇

 d𝜏𝜏𝜏𝜏� [8]

Since in [7] and [8] both the respective differential 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡) or 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) and the upper and lower limit of the integral depend on the 

time 𝑡𝑡𝑡𝑡, the order of differentiation and integration generally cannot 

be interchanged. However, [7] and [8] can be significantly 

simplified in the context of the time-discrete formulation in the 

following subsection 3.2, see [17] and [18]. 

To calculate the derivative of the active power 𝑃𝑃𝑃𝑃 with respect 

to the period 𝑇𝑇𝑇𝑇, we use the following analytical relations. First, we 

consider that the instantaneous power in [1] does not depend on 

the selection of the averaging interval for the active power 

calculation in [3], so that 𝜕𝜕𝜕𝜕𝑝𝑝𝑝𝑝(𝜏𝜏𝜏𝜏) 𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇⁄ = 0. If the period were not 

detected correctly by the power analyzer, the averaging in [3]

would be carried out over a wrong integration interval, but the 

actual period of the voltages and currents would not change.

Furthermore, the time 𝑡𝑡𝑡𝑡 at which the averaging is carried out is 

freely selectable and thus independent of the integration interval 

𝑇𝑇𝑇𝑇, so that 𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡 𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇⁄ = 0. We continue to consider the product rule, 
d
d𝑥𝑥𝑥𝑥

[𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥) ∙ 𝑣𝑣𝑣𝑣(𝑥𝑥𝑥𝑥)] = d𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥)
d𝑥𝑥𝑥𝑥

∙ 𝑣𝑣𝑣𝑣(𝑥𝑥𝑥𝑥) + d𝑣𝑣𝑣𝑣(𝑥𝑥𝑥𝑥)
d𝑥𝑥𝑥𝑥

∙ 𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥), see (8), the Leibniz

integral rule for parameter integrals, d
d𝑦𝑦𝑦𝑦
�∫ 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝑏𝑏𝑏𝑏(𝑦𝑦𝑦𝑦)
𝑎𝑎𝑎𝑎(𝑦𝑦𝑦𝑦)  d𝑥𝑥𝑥𝑥� =

∫ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

𝑏𝑏𝑏𝑏(𝑥𝑥𝑥𝑥)
𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥) d𝑥𝑥𝑥𝑥 + 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝑦𝑦𝑦𝑦)

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
∙ 𝑓𝑓𝑓𝑓(𝑏𝑏𝑏𝑏(𝑥𝑥𝑥𝑥),𝑦𝑦𝑦𝑦) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝑦𝑦𝑦𝑦)

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
∙ 𝑓𝑓𝑓𝑓(𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥),𝑦𝑦𝑦𝑦) , see (8),

and the periodicity of the instantaneous power 𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡 ) = 𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡)

assumed in the context of active power calculation. With all that 

we obtain:

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 �

1
𝑇𝑇𝑇𝑇 � 𝑝𝑝𝑝𝑝(𝜏𝜏𝜏𝜏)

𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 d𝜏𝜏𝜏𝜏� 

= −
1
𝑇𝑇𝑇𝑇2 � 𝑝𝑝𝑝𝑝(𝜏𝜏𝜏𝜏)

𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 d𝜏𝜏𝜏𝜏
�����������

=−1𝑇𝑇𝑇𝑇∙𝑃𝑃𝑃𝑃

+
1
𝑇𝑇𝑇𝑇 ∙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 � � 𝑝𝑝𝑝𝑝(𝜏𝜏𝜏𝜏)

𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 d𝜏𝜏𝜏𝜏𝜏 

= −
𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇

+
1
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𝜕𝜕𝜕𝜕𝑝𝑝𝑝𝑝(𝜏𝜏𝜏𝜏)
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇���
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𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 d𝜏𝜏𝜏𝜏 +
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 ∙ 𝑝𝑝𝑝𝑝

(𝑡𝑡𝑡𝑡)

−
𝜕𝜕𝜕𝜕(𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡 )
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡 )� 

=
1
𝑇𝑇𝑇𝑇 �

𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇�
=0

[𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡) − 𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡 )] +
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇�
=1

𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡 ) − 𝑃𝑃𝑃𝑃𝑃 

=
1
𝑇𝑇𝑇𝑇

[𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡 − 𝑇𝑇𝑇𝑇) − 𝑃𝑃𝑃𝑃] =
1
𝑇𝑇𝑇𝑇

[𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡) − 𝑃𝑃𝑃𝑃]

[9]
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Theoretically, equations [6] to [9] allow the continuous-time 

estimation of the MU of the active power based on the time-

dependent waveforms of the measured voltages and currents, their 

period and the corresponding uncertainties. In practice, however, 

the analytical expressions of these signals are typically unknown. 

Furthermore, the power calculation in DAQs/power analyzers is 

based on time-discrete samples of the measured signals.  

The calculation of the MU of the energy in [2] is carried out in 

an analogous way to the active power from [3], i.e. analogous to 

equations [6] to [9]: 

𝑢𝑢𝑢𝑢(𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)) =

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�
� �

𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡) ∙ 𝑢𝑢𝑢𝑢�𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈

(𝑡𝑡𝑡𝑡)��
2𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

+ ⋯

+��
𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡) ∙ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝜈𝜈𝜈𝜈

(𝑡𝑡𝑡𝑡)��
2𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

+ ⋯

�
𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕Δ𝑡𝑡𝑡𝑡 ∙ 𝑢𝑢𝑢𝑢(Δ𝑡𝑡𝑡𝑡)�

2

[10]

𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡) =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡)� � �𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝜏𝜏𝜏𝜏)𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈(𝜏𝜏𝜏𝜏)

𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈=1

𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡−Δ𝑡𝑡𝑡𝑡

 d𝜏𝜏𝜏𝜏� [11]

𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡) =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡)� � �𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝜏𝜏𝜏𝜏)𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈(𝜏𝜏𝜏𝜏)

𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈=1

𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡−Δ𝑡𝑡𝑡𝑡

 d𝜏𝜏𝜏𝜏� [12]

𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕Δ𝑡𝑡𝑡𝑡 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕Δ𝑡𝑡𝑡𝑡 � � 𝑝𝑝𝑝𝑝(𝜏𝜏𝜏𝜏)

𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 d𝜏𝜏𝜏𝜏� 

= �
𝜕𝜕𝜕𝜕𝑝𝑝𝑝𝑝(𝜏𝜏𝜏𝜏)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕���
=0

𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 d𝜏𝜏𝜏𝜏 +
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

∙ 𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡)

−
𝜕𝜕𝜕𝜕(𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡) 

=
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
=0

[𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡) − 𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡)] +
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
=1

𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡) 

= 𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡 − Δ𝑡𝑡𝑡𝑡)

[13]

Finally, in this section, we consider the MU of the efficiency 

defined in [4], again using Gaussian uncertainty propagation based 

on the MUs of the input and output active power 𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃in)  and 

𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃out):

𝑢𝑢𝑢𝑢(𝜂𝜂𝜂𝜂) = ��
𝜕𝜕𝜕𝜕𝜂𝜂𝜂𝜂
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃out

∙ 𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃out)�
2

+ �
𝜕𝜕𝜕𝜕𝜂𝜂𝜂𝜂
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃in

∙ 𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃in)�
2

= ��
𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃out)
𝑃𝑃𝑃𝑃in

�
2

+ �
𝑃𝑃𝑃𝑃out ∙ 𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃in)

𝑃𝑃𝑃𝑃in
2 �

2
[14]

3.2. Discrete-time MU Propagation

On the basis of the results of the previous section, the general 

calculation rule for estimating the MU of electrical power, energy

and efficiency are derived. Considering that the measurands are 

sampled at multiple integers 𝑘𝑘𝑘𝑘 𝑘 𝑘 of the sample time 𝑇𝑇𝑇𝑇s , with 

regard to Fig. 3, we obtain sampled values of the terminal voltages

𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘s) = 𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈  and conductor currents 𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈(𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘s) = 𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈 . 

Thus, we obtain time-discrete samples of the instantaneous power 

in [1]:

𝑝𝑝𝑝𝑝𝜈𝜈𝜈𝜈 = �𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈 ∙ 𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈

𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈=1

[15]

We further assume that the period 𝑇𝑇𝑇𝑇 of the voltages and currents 

is a multiple integer 𝑁𝑁𝑁𝑁 𝑁 𝑁 of the sample time 𝑇𝑇𝑇𝑇s, so that 𝑇𝑇𝑇𝑇 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁s. 

To derive a discrete-time representation of the active power 𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈 ≈

𝑃𝑃𝑃𝑃 from [3], we approximate the integration by applying right-hand 

rectangle method (Riemann sum)(8), where the time infinitesimal 

is substituted by the finite sampling time d𝜏𝜏𝜏𝜏 𝜏  𝑇𝑇𝑇𝑇s and additionally 

[15] is taken into account.

𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈 =
1
𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇s

∙ � 𝑝𝑝𝑝𝑝𝜅𝜅𝜅𝜅 ∙ 𝑇𝑇𝑇𝑇s

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅𝜅𝜈𝜈𝜈𝜈−𝑁𝑁𝑁𝑁𝑁𝑁

=
1
𝑁𝑁𝑁𝑁 � 𝑝𝑝𝑝𝑝𝜅𝜅𝜅𝜅

𝜈𝜈𝜈𝜈

𝜇𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈−𝑁𝑁𝑁𝑁𝑁𝑁

 

=
1
𝑁𝑁𝑁𝑁 � �𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅 ∙ 𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅

𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈=1

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅=𝜈𝜈𝜈𝜈−𝑁𝑁𝑁𝑁+1

[16]

For given sample based MUs of the measurands 𝑢𝑢𝑢𝑢(𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈) ,

𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈) we obtain the following partial derivatives:

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈
𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝜈𝜈𝜈𝜈ℎ

=
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝜈𝜈𝜈𝜈ℎ
�

1
𝑁𝑁𝑁𝑁 � �𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅 ∙ 𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅

𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅𝜅𝜈𝜈𝜈𝜈−𝑁𝑁𝑁𝑁𝑁𝑁

� 

=
1
𝑁𝑁𝑁𝑁 � �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝜈𝜈𝜈𝜈ℎ

𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅 ∙ 𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅

𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈=1

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅=𝜈𝜈𝜈𝜈−𝑁𝑁𝑁𝑁+1

=
1
𝑁𝑁𝑁𝑁 ∙ 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚ℎ

[17]

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚

=
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚
�

1
𝑁𝑁𝑁𝑁 � �𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅 ∙ 𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅

𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅𝜅𝜈𝜈𝜈𝜈−𝑁𝑁𝑁𝑁𝑁𝑁

� 

=
1
𝑁𝑁𝑁𝑁 � �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚ℎ

𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅 ∙ 𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅

𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈=1

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅=𝜈𝜈𝜈𝜈−𝑁𝑁𝑁𝑁+1

=
1
𝑁𝑁𝑁𝑁 ∙ 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝜈𝜈𝜈𝜈ℎ

[18]

Based on the previous assumption 𝑇𝑇𝑇𝑇 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁s , we derive we 

derive 𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝑁𝑁𝑁𝑁

= 𝑇𝑇𝑇𝑇s ⟹ 𝜕𝜕𝜕𝜕𝑁𝑁𝑁𝑁 = 1
𝑇𝑇𝑇𝑇s
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 , resulting in 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑘𝑘𝑘𝑘

𝜕𝜕𝜕𝜕𝑁𝑁𝑁𝑁
= 𝑇𝑇𝑇𝑇s

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇

. With 

respect to [9], we obtain:
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈
𝜕𝜕𝜕𝜕𝑁𝑁𝑁𝑁 = 𝑇𝑇𝑇𝑇s

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇 =

𝑇𝑇𝑇𝑇s
𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇s

[𝑝𝑝𝑝𝑝𝜈𝜈𝜈𝜈 − 𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈] =
1
𝑁𝑁𝑁𝑁

[𝑝𝑝𝑝𝑝𝜈𝜈𝜈𝜈 − 𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈] [19]

In analogy to the continuous time representation of the MU in 

[6], the discrete time representation of the MU of discrete active 

power calculation in [16] is given by: 
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𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈) =

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

� ��
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃𝜅𝜅𝜅𝜅
𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅

∙ 𝑢𝑢𝑢𝑢(𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅)�
2𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅𝜅𝜈𝜈𝜈𝜈−𝑁𝑁𝑁𝑁𝑁𝑁

+ ⋯

… + � ��
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜅𝜅𝜅𝜅
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅

∙ 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅)�
2𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅𝜅𝜈𝜈𝜈𝜈−𝑁𝑁𝑁𝑁𝑁𝑁

+ ⋯

… + �
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃𝜅𝜅𝜅𝜅
𝜕𝜕𝜕𝜕𝑁𝑁𝑁𝑁 ∙ 𝑢𝑢𝑢𝑢(𝑁𝑁𝑁𝑁)�

2

[20]

Inserting [17] to [18] into [19], we obtain the MU of the 

discrete-time calculation of active power: 

𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈) =
1
𝑁𝑁𝑁𝑁 ∙

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

� �[𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅 ∙ 𝑢𝑢𝑢𝑢(𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅)]2
𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅𝜅𝜈𝜈𝜈𝜈−𝑁𝑁𝑁𝑁𝑁𝑁

+ ⋯

… + � �[𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅 ∙ 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅)]2
𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅𝜅𝜈𝜈𝜈𝜈−𝑁𝑁𝑁𝑁𝑁𝑁

+ ⋯

… + [(𝑝𝑝𝑝𝑝𝜈𝜈𝜈𝜈 − 𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈) ∙ 𝑢𝑢𝑢𝑢(𝑁𝑁𝑁𝑁)]2

[21]

In order to estimate the MU of the energy from [2], we further 

assume that the time interval Δ𝑡𝑡𝑡𝑡 is a multiple integer 𝑀𝑀𝑀𝑀 𝑀 𝑀 of the 

sample time 𝑇𝑇𝑇𝑇s , so that Δ𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀s . To derive a discrete-time 

representation of the active power 𝑒𝑒𝑒𝑒𝜈𝜈𝜈𝜈 ≈ 𝑒𝑒𝑒𝑒(𝑘𝑘𝑘𝑘𝑇𝑇𝑇𝑇s) from [2], we 

approximate the integration by again applying right-hand 

rectangle method (Riemann sum)(8), where the time infinitesimal 

is substituted by the finite sampling time d𝜏𝜏𝜏𝜏 𝜏  𝑇𝑇𝑇𝑇s and additionally 

[15] is taken into account.

𝑒𝑒𝑒𝑒𝜈𝜈𝜈𝜈 = � 𝑝𝑝𝑝𝑝𝜅𝜅𝜅𝜅 ∙ 𝑇𝑇𝑇𝑇s

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅=𝜈𝜈𝜈𝜈−𝑀𝑀𝑀𝑀+1

= 𝑇𝑇𝑇𝑇s ∙ � �𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅 ∙ 𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅

𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈=1

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅=𝜈𝜈𝜈𝜈−𝑀𝑀𝑀𝑀+1

[22]

For given sample based MUs of the measurands 𝑢𝑢𝑢𝑢(𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈) ,

𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈) we obtain the following partial derivatives in analogy to 

[17] and [18]:
𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒𝜈𝜈𝜈𝜈
𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝜈𝜈𝜈𝜈ℎ

= 𝑇𝑇𝑇𝑇s ∙ 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚ℎ [23]

𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒𝜈𝜈𝜈𝜈
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚ℎ

= 𝑇𝑇𝑇𝑇s ∙ 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝜈𝜈𝜈𝜈ℎ [24]

Based on the previous assumption Δ𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀s , we derive we 

derive 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑀𝑀𝑀𝑀

= 𝑇𝑇𝑇𝑇s ⟹ 𝜕𝜕𝜕𝜕𝑀𝑀𝑀𝑀 = 1
𝑇𝑇𝑇𝑇s
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 , resulting in 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑘𝑘𝑘𝑘

𝜕𝜕𝜕𝜕𝑀𝑀𝑀𝑀
= 𝑇𝑇𝑇𝑇s

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

. With 

respect to [13], we obtain:
𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒𝜈𝜈𝜈𝜈
𝜕𝜕𝜕𝜕𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑇𝑇s

𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒𝜈𝜈𝜈𝜈
𝜕𝜕𝜕𝜕Δ𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇s ∙ 𝑝𝑝𝑝𝑝𝜈𝜈𝜈𝜈−𝑀𝑀𝑀𝑀 [25]

In analogy to the continuous time representation of the MU in 

[10], the discrete time representation of the MU of discrete energy 

calculation is given by:

𝑢𝑢𝑢𝑢(𝑒𝑒𝑒𝑒𝜈𝜈𝜈𝜈) =

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

� ��
𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒𝜅𝜅𝜅𝜅
𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅

∙ 𝑢𝑢𝑢𝑢(𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅)�
2𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅𝜅𝜈𝜈𝜈𝜈−𝑀𝑀𝑀𝑀𝑀𝑀

+ ⋯

… + � ��
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜅𝜅𝜅𝜅
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅

∙ 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅)�
2𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅𝜅𝜈𝜈𝜈𝜈−𝑀𝑀𝑀𝑀𝑀𝑀

+ ⋯

… + �
𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒𝜅𝜅𝜅𝜅
𝜕𝜕𝜕𝜕𝑀𝑀𝑀𝑀 ∙ 𝑢𝑢𝑢𝑢(𝑀𝑀𝑀𝑀)�

2

[26]

Inserting [23] to [25] into [26], we obtain the MU of the 

discrete-time calculation of energy: 

𝑢𝑢𝑢𝑢(𝑒𝑒𝑒𝑒𝜈𝜈𝜈𝜈) = 𝑇𝑇𝑇𝑇s ∙

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

� �[𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅 ∙ 𝑢𝑢𝑢𝑢(𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅)]2
𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅𝜅𝜈𝜈𝜈𝜈−𝑀𝑀𝑀𝑀𝑀𝑀

+ ⋯

… + � �[𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅 ∙ 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝜈𝜈𝜈𝜈𝜅𝜅𝜅𝜅)]2
𝑛𝑛𝑛𝑛

𝜈𝜈𝜈𝜈𝜈𝜈

𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅𝜅𝜈𝜈𝜈𝜈−𝑀𝑀𝑀𝑀𝑀𝑀

+ ⋯

… + [𝑝𝑝𝑝𝑝𝜈𝜈𝜈𝜈−𝑀𝑀𝑀𝑀 ∙ 𝑢𝑢𝑢𝑢(𝑁𝑁𝑁𝑁)]2

[27]

The MU of the efficiency is calculated based on the MUs of 

discrete output and input active power 𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃out𝜈𝜈𝜈𝜈) and 𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃in𝜈𝜈𝜈𝜈) ,

which might in in turn be calculated by [21] in case of an electric 

system, for example power converter: 

𝑢𝑢𝑢𝑢(𝜂𝜂𝜂𝜂𝜈𝜈𝜈𝜈) = ��
𝜕𝜕𝜕𝜕𝜂𝜂𝜂𝜂𝜈𝜈𝜈𝜈
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃out𝜈𝜈𝜈𝜈

∙ 𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃out𝜈𝜈𝜈𝜈)�
2

+ �
𝜕𝜕𝜕𝜕𝜂𝜂𝜂𝜂
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃in𝜈𝜈𝜈𝜈

∙ 𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃in𝜈𝜈𝜈𝜈)�
2

= ��
𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃out𝜈𝜈𝜈𝜈)
𝑃𝑃𝑃𝑃in𝜈𝜈𝜈𝜈

�
2

+ �
𝑃𝑃𝑃𝑃out𝜈𝜈𝜈𝜈 ∙ 𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃in𝜈𝜈𝜈𝜈)

𝑃𝑃𝑃𝑃in𝜈𝜈𝜈𝜈
2 �

2
[28]

Of course, [21] can also be applied if, for example, one of the 

power quantities in an electrical machine is an averaged 

mechanical power. In this case, the mechanical power can be 

estimated in the same way as the electrical power, but using the 

measured speed and torque values and its MUs.

4. SPECIAL CASE: MU OF DC POWER OF A 2-POLE

In this section, we consider the application of the general rule

from [21] to a two-terminal network with ideal DC signals as 

depicted in Fig. 4. 

Fig. 4  Ideal DC 2-wire system

As is known from the literature(6), the instantaneous power 

transfer of this two-terminal network is obtained from [15] with 

𝑛𝑛𝑛𝑛 = 2 and 𝑖𝑖𝑖𝑖2𝜈𝜈𝜈𝜈 = −𝑖𝑖𝑖𝑖1𝜈𝜈𝜈𝜈 as 𝑝𝑝𝑝𝑝𝜈𝜈𝜈𝜈 = 𝑣𝑣𝑣𝑣1𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈 ∙ 𝑖𝑖𝑖𝑖1𝜈𝜈𝜈𝜈 + 𝑣𝑣𝑣𝑣2𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈 ∙ 𝑖𝑖𝑖𝑖2𝜈𝜈𝜈𝜈 = 𝑣𝑣𝑣𝑣12𝜈𝜈𝜈𝜈 ∙ 𝑖𝑖𝑖𝑖1𝜈𝜈𝜈𝜈 . 

Since the ideal DC case is considered in Fig. 4, this results in the 

instantaneous power 𝑝𝑝𝑝𝑝𝜈𝜈𝜈𝜈 = 𝑣𝑣𝑣𝑣12𝜈𝜈𝜈𝜈 ∙ 𝑖𝑖𝑖𝑖1𝜈𝜈𝜈𝜈 = 𝑉𝑉𝑉𝑉DC𝑘𝑘𝑘𝑘 ∙ 𝐼𝐼𝐼𝐼DC𝑘𝑘𝑘𝑘 . From [17], 

we derive:
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𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈) =
1
𝑁𝑁𝑁𝑁 ∙

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

� [𝐼𝐼𝐼𝐼DC𝜅𝜅𝜅𝜅 ∙ 𝑢𝑢𝑢𝑢(𝑉𝑉𝑉𝑉DC𝜅𝜅𝜅𝜅)]2
𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅𝜅𝜈𝜈𝜈𝜈−𝑁𝑁𝑁𝑁𝑁𝑁

+ ⋯

… + � [𝑉𝑉𝑉𝑉DC𝜅𝜅𝜅𝜅 ∙ 𝑢𝑢𝑢𝑢(𝐼𝐼𝐼𝐼DC𝜅𝜅𝜅𝜅)]2
𝜈𝜈𝜈𝜈

𝜅𝜅𝜅𝜅𝜅𝜈𝜈𝜈𝜈−𝑁𝑁𝑁𝑁𝑁𝑁

+ ⋯

… + [(𝑝𝑝𝑝𝑝𝜈𝜈𝜈𝜈 − 𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈) ∙ 𝑢𝑢𝑢𝑢(𝑁𝑁𝑁𝑁)]2

[29]

We assume that in the DC case all samples of voltage and 

current are equal (neglecting the influence of MU for the ideal 

consideration), so that 𝑉𝑉𝑉𝑉DC𝜈𝜈𝜈𝜈 = 𝑉𝑉𝑉𝑉DC and 𝐼𝐼𝐼𝐼DC𝜈𝜈𝜈𝜈 = 𝐼𝐼𝐼𝐼DC. Furthermore,

the instantaneous power 𝑝𝑝𝑝𝑝𝜈𝜈𝜈𝜈 is constant and thus equivalent to its 

mean value, the active power 𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈, so that 𝑝𝑝𝑝𝑝𝜈𝜈𝜈𝜈 − 𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈 = 0 regardless 

of the averaging interval or the number of samples 𝑁𝑁𝑁𝑁 used for 

averaging. Furthermore, we assume that in the ideal DC case and 

under constant ambient conditions, e.g. constant ambient 

temperature, the MUs of the DC quantities are the same at each 

sampling time, i.e. 𝑢𝑢𝑢𝑢(𝑉𝑉𝑉𝑉DC𝜈𝜈𝜈𝜈) = 𝑢𝑢𝑢𝑢(𝑉𝑉𝑉𝑉DC)  and 𝑢𝑢𝑢𝑢(𝐼𝐼𝐼𝐼DC𝜈𝜈𝜈𝜈) = 𝑢𝑢𝑢𝑢(𝐼𝐼𝐼𝐼DC) . 

These idealized assumptions allow us to simplify [29] to estimate 

the MU of the active power of a two-terminal network in the ideal 

DC case:

𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃𝜈𝜈𝜈𝜈) =
1
√𝑁𝑁𝑁𝑁

∙ �[𝐼𝐼𝐼𝐼DC ∙ 𝑢𝑢𝑢𝑢(𝑉𝑉𝑉𝑉DC)]2 + [𝑉𝑉𝑉𝑉DC ∙ 𝑢𝑢𝑢𝑢(𝐼𝐼𝐼𝐼DC)]2 [30]

Equation [23] confirms the well-known relation, that averaging 

a DC signal over 𝑁𝑁𝑁𝑁 samples reduces the MU of the result by a 

factor of 1
√𝑁𝑁𝑁𝑁

compared to no averaging.  

5. CONCLUSIONS

This paper describes the importance of test and measurement 

equipment and technologies when optimizing an electric vehicle 

powertrain. Based on the fundamental system topology, typical 

requirements for the measurement technology are presented. It is 

analytically demonstrated how the MU of the measured variables 

propagates to the MU of relevant system parameters calculated 

from the measured variables, such as active power, energy and 

efficiency. A method is chosen that correctly takes into account 

the digital calculation algorithms of modern power measurement 

devices. Many established methods for estimating the MU are only 

applicable under ideal conditions, for example for sinusoidal or 

DC quantities. The innovative approach of this paper also allows 

for the consideration of non-sinusoidal AC quantities (and DC), as 

they occur at the output of a power converter. The major challenge 

and continuous optimization in the practical application of the 

presented method involves the calibration processes for 

determining the uncertainty of individual samples of voltages and 

currents.  
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