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ABSTRACT: Not all Li-on cells have the same material properties, and the electrochemical cell model parameters (based on the DFN or
P2D approach) cannot be used universally in different cells. The cell model must be calibrated before being scaled to a complete pack
level for vehicle simulation. This work presents an approach to optimize the electrochemical NCA/Gr.-SiOx Li-ion cell model under
transient driving cycles. The cell data is scaled from a dual-motor, long-range Tesla Model Y experiment with a 75-kWh battery (Panasonic
21700 format cell). Multiple thermocouples were installed on the battery packs to measure brick-to-brick, module-to-module temperature
for average data. Battery voltage, state-of-charge, and cooling data were recorded using OBD data. A total of 42 P2D cell parameters were
reduced to 26 parameters using the Morris Method (aka Elementary Effect Method); then, the 26 parameters were optimized using the

Genetic Algorithm optimization. Using the optimized 26 cell parameters, the cell and pack models could reasonably reproduce voltage,

SOC, and temperature well under constant speed, WLTC, and FTP-HWFET cycles in winter and summer driving.
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1. INTRODUCTION

Different battery electric vehicles (BEV) use different cell
chemistries and material properties for the electrode and
electrolyte [1]. In model-based development (MBD), the lithium-
ion battery cell is modeled using Doyle Fuller Newman (DFN)
theory based on the pseudo-2D (P2D) approach. Some researchers
[2-3] reported that the DFN parameters range from 16-88
parameters. The numerous P2D parameters are a challenge
regarding model identification and parameter optimization. The
battery cell makers produce cells using different electrodes and
electrolytes with different properties, the DFN parameters are also
different for geometric, transport, and kinetic parameters [4].
Moreover, these cell parameters vary from cell to cell, depending
on their manufacturers. Consequently, the P2D parameters cannot
be transferred from cell to cell [1]. This proves to be a challenge
for battery cell modeling before it can be scaled up to several
thousand cells in a high-voltage pack.

While black-box models such as equivalent circuit models
(ECM) and machine learning (ML) are promising models for
vehicle simulation, the ECM relies on previous data to predict
future cell responses (current, potential, and charge-discharge
data). The ML models are fast but require large training data, and
they do not provide insights into cell responses under different cell

chemistry and operating conditions [5].

In addition, most of the previous studies have provided P2D
parameter identification and optimizations using cell data from
testing chambers. These experimental data do not account for the
impact of actual vehicle thermal management systems (VIMS).
Therefore, it is essential to consider the cell response (voltage,
SOC, temperature) due to the influence of a cooling system of the
VTMS. These limitations are investigated in this work. The
present investigation utilizes experimental data from a mass-
production BEV (Tesla Model Y, long-range, dual motors)
equipped with a 75 kWh Li-ion battery (LIB) pack. The LIB pack
consists of 4416 cells and is equipped with an octovalve VTMS.
The vehicle experiments are performed at a constant speed, as well
as WLTC driving tests. Experimental and Li-ion P2D cell

modeling procedures are reported.

2. Research Methods

2.1. Battery electric vehicle experimental procedures

In this work, the Tesla Model Y, a long-range, dual-motor with
a 75-kWh LIB pack, was used in the authors' experimental test
facility, as shown in Figure 1 [6]. The vehicle is equipped with an
octovalve VTMS using egl50 as a coolant. 80 thermocouples are
installed on various modules and battery bricks for temperature
distribution measurement. Battery pack inlet/outlet pressure and
coolant flow rate are measured for a complete pack with cooling

system model development. Figure 2 shows the complete pack
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model with battery thermal management system (BTMS) and
modeled heat transfer characteristics from cell to coolant, coolant
pipe wall, pack tray, air gap, and pack case. Table 1 lists baseline
vehicle specifications. The 75-kWh LIB pack (96s46p) has 4416

cylindrical cells arranged into four modules.

Table 1. Base specification of the BEV and its battery [7]

Tesla Model Y, Year 2020, dual motors

Vehicle weight 2000 kg
Coolant EGL 50
Battery 75 kWh
Battery cell Panasonic 21700 format

21 x 71 mm

NCA/Gr.SiOx-C

Cell specification

Electrodes

Table 2. Experimental condition for model validation

Case Cycle Te, °C Ta, °C SOC, %
1 WLTC X 3 26 26 36 %
2 Constant 60 km/h -9 -11 83.5
3 (FTP+HWFET) X 2 41 30 46.3

The battery cell is Panasonic 21700 (cell diameter 21 mm, cell
height 70 mm) cylindrical format with NCA cathode and Graphite-
SiOx anode. Table 2 lists the vehicle test conditions for model
development and validation. Case 1 is test under repeated WTLC
x 3 for an initial SOC = 36%. The test was conducted at the
ambient air temperature Ta equal to the cell temperature Tc at 26
°C. Pack performance data (voltage and current) are scaled to a
cell level for cell model development and parameter identification
to speed up the simulation time. Once the cell parameters are
identified and optimized, they are used in the pack model. Case 2
presents the test and validating conditions under a fixed 60 km/h
driving under extreme weather (Tc = - 9 degC, Ta = -11 degC,
SOC = 83.5%) [7]. Case 2 is considered as cell heating since Ta <
Tc. Case 3 (2 times repeated FTP+HWFET cycle) is assumed as
the battery cooling since Ta = 30 degC < Tc =41 degC. Hotter Tc
than Ta is assumed to be the condition in which the 2nd vehicle
trip starts after the 1% trip at a certain stop time. Cases 1-3 are
chosen to ensure the cell model parameterizations can be used at
the pack level without modifications, and the cell and pack

modeling methods are valid for constant and transient vehicle

speeds under winter and summer driving.
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Figure 1. Vehicle testbench at Waseda University, and thermocouple setup for temperature measurement
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Complete pack model with cooling system
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Figure 2. Overview of pack model with cooling system (left) and modeled heat transfer characteristics from cell to ambient (right)
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Figure 3. P2D electrochemical cell model overview [8]

2.2. P2D cell model, global sensitivity analysis using Morris

Method and cell parameterization using Genetic Algorithm

Figure 3 shows an overview of the P2D cell model. The
details of the modeling theory and its derivations can be found
in [4]. For the sake of brevity, detailed cell modeling is not
included in this paper. An expanded modeling theory for the
P2D cell model can be found in a previous work of the authors
[8]. The Elementary Effect (EE) or Morris Method [9] is utilized
to rank the most and least essential parameters out of 42 P2D
cell parameters, as listed in Table 3. These parameters are
classified as cathode, anode, electrolyte, and other categories.
The parameter boundaries are taken from literature studies and
initial guesses [1, 10-13]. Once the most and least essential
parameters are identified, 16 parameters are left out due to their
low standard deviations. Parameters with high standard
deviations are 26 parameters and are further optimized using a
Genetic Algorithm. An overview of the GA parameter
optimization is shown in Figure 4.

Figure 5 overviews the experimental results of Case 1 (Ta =
Tc =26 degC, initial SOC = 36%, WLTCx3). The pack current
and voltage are scaled to a cell level for the model validation.

The cell operating conditions are 4.24 V (open circuit voltage at

100% SOC) and 2.319 V (open circuit voltage at 0% SOC).
Initial SOC and scaled cell current requests are initialized as
model inputs. Once the model is well calibrated in Case 1 using
the cell model parameterization in Section 2.2, the same P2D
parameters are used to validate Cases 2-3 at the pack level. This
method ensures model consistency at the cell and pack under

steady and transient driving cycles at hot and cold temperatures.
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Figure 4. Genetic algorithm optimization for 26 parameters.
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Table 3. A total of 42 P2D cell parameters for global sensitivity analysis and GA-optimization

No. Parameters Unit Definition Boundaries
1 Ly micron Cathode thickness 60— 95
2 T micron Cathode particle Size 3-12
3 troitp micron Cathode foil thickness 10-20
4 Dsp - Cathode solid diffusion multiplier 0.7-1.2
5 lop - Cathode ECD multiplier 07-1.2
6 multyy arp - Cathode OCP entropic heat multiplier 0.7-1.2
7] 2 oy S/m Cathode conductivity 90— 120
8 § q;‘;g mAh/g Cathode first charge capacity 150 —200
9 Unmax,p A% Open circuit potential of cathode 39-42
10 tritm,p nm Cathode’s initial film thickness 1.0-2.5
11 Pp g/em’® Conductive agent density of cathode 1.8-2.1
12 Pbp g/em’ Cathode binder density 1.5-2.0
13 krerp m?3/mol®’s | User kinetic rate constant of cathode 9.6e-11 —9.6e-10
14 Dsp m?/s Solid diffusivity of cathode 2e-14 — 2e-13
15 L, micron Anode thickness 60— 95
16 Ter.m micron Particle size of Gr.-anode 15-20
17 TSioxn micron Particle size of SiOx anode 8-12
18 On S/m Anode conductivity 90-110
19 lon - Anode ECD multiplier 0.7-1.2
20 Ds - Anode solid diffusion multiplier 0.7-1.5
21 multay arn Anode OCP entropic heat multiplier 0.7-1.2
22 Unaxn \Y% Anode OCP 1.8-2.1
23 % q};:é mAbh/g First charge capacity of Gr. anode 1600 — 1760
24 g tritmn nm Initial film thickness of anode 2-5
25 qfé"gx mAh/g First charge capacity of anode SiOx 1600 — 1760
26 qffj‘zx mAh/g First discharge capacity of anode SiOx 1400 — 1600
27 Msio fraction Active material #1 Mass Fraction of SiOx | 0.005 —0.04
28 Epsio kJ/mol Activation energy of SiO anode, , D: 5.0-16.55
solid diffusivity
29 Eqsio kJ/mol Activation energy ECD for SiOx anode 5.0-12.85
30 Ds 6. m?/s Solid diffusivity of Gr. anode le-14 —1e-13
31 Ds sio m?/s Solid diffusivity of SiOx anode 8.09e-15 — 8.09e-
14
32 multy, - Electrolyte ionic conductivity multiplier 0.7-1.2
33 multp, - Electrolyte diffusional conductivity 0.7-1.2
multiplier
34 % k;f f - Electrolyte ionic diffusivity multiplier 0.7-1.2
35| 8 Ce mol/m? Electrolyte concentration 1100 — 1300
36 % De g/em’? Electrolyte density 1.1-1.3
37 & - Electrolyte volume fraction 0.5-0.8
38 mult,o - Transference number multiplier of 02-04
electrolyte
39 Lg micron Separator thickness 10-20
40 5 Em - Membrane porosity 0.2-0.6
41 g R, Ohm-m? Contact resistance (@ SEI film and 1.0e-5 — 8.58e-4
anode/foil and cathode/foil interfaces)
42 h W/(m?-K) Convective heat transfer coefficient 1-10
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Figure 5. Voltage, temperature, SOC under WLTCx3, ambient temperature Ta = cell temperature Tc = 26 °C, SOC;i = 36%
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Figure 6. Overview of the complete pack with cooling system model.

2.3. Pack model with cooling system model overview Case 1: WLTCx3, SOC = 36%, T, = T, = 26 °C
Figure 6 presents an overview of the total pack model with its g ]

cooling system. Modules 1 and 4 have 23 bricks, while Modules % ; :

2-3 have 25 bricks. Each brick has 46 cells connected in parallel. 3 :; :

The model consists of 4416 Li-ion cells with multiple thousands S —— ‘

of flow channels and pipe bends. As shown in Figure 6, each ;zj |

pack contains 7 coolant lines, each with 28 flow channels. Heat § zg : Moasured ! '
transfer characteristics are modeled from cell to coolant, pipe <, p2D

wall, tray, air gap, and pack case to capture the dynamic

temperature of the coolant outlet from the LIB pack.

4. Results and discussion

4.1 Cell response validation

Figure 7 shows the validations of the cell model responses, such

as terminal voltage, temperature, and SOC. Using the Morris

Method to identify the most and least important P2D parameters £ ff JwTLcs ‘ ‘

before GA optimization is suitable for validating the battery E-L 60

model using the electrochemical approach (P2D or DFN model). g 32 M&M hWMMM }HMMMN\M WWW\
The result shows that the cell voltage, temperature, and SOC are 0 1500 3000 4500

Time s
sufficiently validated with over 90% accuracy. Figure 7. Cell response validation for Case 1 (Ta =Tc =26

degC, 36% SOC, WLTC x 3)
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Case 2: 60 km/h, SOC = 83.5%, Ta = -11 degC, Tc = -9degC
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Figure 8. Pack + cooling system model validations (pressure drop,

outlet temperature, voltage, SOC) for Case 2 (60 km/h, Ta=-11

degC, Tc =-9 degC, SOC = 83.5%)

4.2 Pack response validations in winter and summer tests
Optimized P2D cell parameters from Case 1 are utilized in
the pack model validations in Cases 2-3. It is noted that the pack
model includes all cells with their cooling system, pipe bend,
and heat transfer characteristics from cell-ambient (via coolant,
coolant pipe wall, tray, air gap, and pack case). Each model has
7 coolant flow channels, allowing egl50 to pass through 23-25
battery bricks, as depicted in Figure 2. The battery pack
benchmark data were taken from a third-party cost analysis
report [ 14], while detailed specifications of the battery pack with
its battery thermal management system were based on previous
works of the authors [6-8]. It can be seen in Figure 8 that the
pack model with optimized P2D parameters is valid for sub-
negative temperatures driving at 60 km/h. Reasonable LIB pack

pressure drop, coolant temperature at pack outlet, pack voltage,

Case 3: (FTP+HWFET) x 2 , SOC = 46.3%, Tc = 41 degC, Ta = 30 degC
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Figure 9. Pack + cooling system model validations (pressure drop,
outlet temperature, voltage, SOC) for Case 3 (FTP + HWFET x 2,
Tc =41 degC, Ta =30 degC, SOC = 83.5%)

and SOC are reasonably reproduced. At t = 0 — 1000 sec,
predicted thermal and electrical performances of the battery
pack are underestimated because this time is used for battery
pre-conditioning to reach a desired temperature by changing the
current request or vehicle speed. This vehicle test is considered
a cell heating mode. The measurement started once the Tc
reaches -9 °C (from Ta = -11 °C). Overall, the thermal,
electrical, and pressure drop performances of the complete pack
model with its BMTS are well captured even under negative
temperature driving. The following section shows a model
validated under repeated transient driving to prove that the pack
+ BTMS model is valid under transient conditions.

Figure 9 shows the pack model validation for Case 3, in which
the test is repeated 2 times under the combined Federal Test

Procedure (FTP) and EPA Highway Fuel Economy Test Cycle
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(HWFET) at Tc =41 °C, Ta = 30 °C, and SOC = 83.5%. This
test condition is assumed to be a cell cooling mode since Tc >
Ta, considering the 2nd vehicle trip starts after the 1% trip while
the battery pack is still hot. Pack pressure drop, outlet coolant
temperature, pack terminal voltage, and SOC are well

reproduced.

The results in Cases 1-3 conclude that the cell parameter
identification using the Morris Method (aka Elementary Effect
Method) combined with the GA-optimization are valid for hot
(26 degC and 30 degC) and cold (-11 degC) driving conditions.
Considering pipe bends, friction losses, and heat transfer
characteristics from cell to ambient, the complete pack model
could capture the thermal and electrical performance of the 75-
kWh battery pack. This complete pack model can be a
benchmark model for a vehicle-level simulation to develop an

advanced thermal management system.

5. Conclusion

An accurate prediction of cell responses (voltage, temperature,
SOC) was obtained using a systematic optimization approach
under constant speed, WLTC, and FTP+HWFET driving cycles.
The cell model can be scaled to a LIB pack using the same P2D
parameters. The cell model parameterization based on the
Morris Method (aka Elementary Effect Method) combined with
the genetic algorithm optimization is effective in predicting cell
response (SOC, voltage, temperature) under a transient driving
cycle.

The cell parameters are used in a pack model considering pipe
friction due to pipe bends, detailed geometric specifications,
coolant properties, and heat transfer between cells and the
ambient. The developed pack model with a complete battery
cooling system is reasonably validated under winter (-11 °C)
and summer (26 — 30 °C) test data. This pack model can be used
as a benchmark platform for vehicle-level simulation. The
model can be used to test various cooling strategies and
advanced thermal management systems.

One shortcoming of this work is the CPU time since the model
has several thousand cells and pipe bends, which could be a
challenge when the model is integrated with a vehicle model. A
data-driven or neural network model will soon be developed to
speed up the simulation time. A digital twin simulation model
can be developed by combining a data-driven pack model and

driving-aware vehicle speed and road conditions data from GPS.
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Nomenclatures

BTMS: Battery thermal management system
EPA: Environmental Protection Agency
VTMS: Vehicle thermal management system
Ta: ambient temperature

Tc: Cell temperature

P2D: Pseudo 2-dimensional

DFN: Doyle-Fuller-Newman

NCA: Nickel Cobalt Aluminum

Gr-SiOx: Graphite — Silicon Oxide

GA: Genetic algorithm

SOC: State of charge

WLTC: Worldwide Harmonized Light vehicles Test Cycle

FTP: Federal Test Procedure
HWFET: Highway Fuel Economy Test Cycle
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