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ABSTRACT: The transition towards vehicle electrification presents various challenges due to uncertainties in charging behavior

and battery aging. This study proposes a strategy to generate a charging schedule for a Battery Electric Vehicles (BEVs) fleet to

reduce the Total Cost of Operation (TCO). Battery Digital Twins (DTs) are used to improve the standard scheduling strategy, which

provides a realistic assessment of battery aging, grid load, and charging time. The DTs are adaptive, have fast prediction and have

low training costs. The method is virtually tested to show the improvements in scheduling while using the DTs.
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1. INTRODUCTION

Greenhouse Gas Emission (GGE) are known to cause a
significant negative impact on the environment and are one of the
major contributors to climate change (V) due to the prevalent usage
of Internal Combustion Engine (ICE) in most modern vehicles @,
This has led to the enforcement of zero-emission zones in cities
where only emission-free vehicles are allowed @, In recent years,
BEV have been identified as a potential mitigation technology for
this problem, as they have lower well-to-wheel GGE emissions
than ICEs . However, the complete adoption of BEVs still faces
several challenges due to uncertainties in modeling charging
behavior and battery aging. These challenges are particularly
relevant in commercial applications, such as delivery companies
and bus operators, which require large fleets of BEVs that could
benefit from optimal scheduling for cost reduction.

This work presents a Charge Planning Tool (CPT) that can be
used for scheduling the charging for a large fleet of BEVs ©). This
tool is improved by using adaptive DTs which can make realistic
predictions on battery parameters and self-calibrate during the
battery lifetime. Finally, a comparison of charging schedules with

and without the DTs is shown.

2. CHARGE PLANNING TOOL
The CPT is designed to manage the smart charging of large-
scale Electric Vehicle (EV) fleets, particularly heavy-duty
commercial trucks and buses, at a single depot or similar facility.

The objective is to create an optimal charging schedule that

minimizes costs and maximizes operational efficiency,
considering limitations such as limited chargers and grid capacity.
The CPT is suitable for scenarios where vehicles, following a
logistics schedule, return to a central hub for charging, excluding
public charging during (round) trips. The logistics planning
determines the constraints for the charge schedule with specific
arrival (ETA) and departure times (ETD), and the required energy
for the scheduled trips. Reliable scheduling requires accurate
energy consumption estimation, preventing operational disruption
due to underestimation, and saving time by avoiding unnecessary
full charges. The CPT generates a feasible charge schedule and
allocates the charger to the vehicles at a specified time with a
certain charge profile. The schedule can be optimized for
operational costs such as electricity price for a variable tariff, or
battery aging by controlling the charging profile and moment of

charging.

1.1. Problem statement

Consider a fleet of N non-homogeneous vehicles and a set of J
non-homogeneous chargers, given that N > J, and each vehicle
may drive multiple trips per day. The fleet planning software
generates a set of K Charge Requests (CR), where k” charge
request consists of the arrival (t£74) and departure time (t£7P), the

expected SoC upon arrival zET4

and a minimum SoC that is at
least required for the next trip z,:eq for the corresponding vehicle.

The problem is subject to constraints relating to a maximum grid
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capacity P97¢, maximum charging power P/ for each charger
x;j and a compatibility constraint between chargers and vehicles.

The CPT maps the set of CR’s to a set of Charge Assignments

(CA), which contain an allocation to a specific charger x;, a start

t$t%tand end time tZ"%for charging, and a charging power profile

Py, such that the schedule is feasible — constraints are satisfied —
in a heuristic fashion. Subsequently, the CPT optimizes the
operational cost and efficiency of the schedule on factors such as
electricity price, battery lifetime, peak shaving, and schedule
flexibility (i.e., implementing slack time to account for

unpredicted deviations).

2.2. Fast initialization algorithm

Evaluating the feasibility of the logistics plan on the charger
allocation problem requires a computationally efficient solution.
The proposed heuristic method is inspired by Multi-Processor
Scheduling Problems (MSP), where the similarity is drawn
between available tasks versus charge requests, processors versus
chargers, and processing speed versus charging power. The charge
requests are sorted and given a priority according to their laxity,
deadline, arrival time, or other user-defined objectives, and the
chargers are sorted on power levels, either in ascending or
descending order. The algorithm then loops through each one of
the charge requests, trying to assign them to chargers, according
to the previously decided order of priority. In case the assignment
is feasible, it will be saved in the C4. Otherwise, a different charge
power or charger is selected. In case the assignment fails, the
priority and order need to be updated, and a new attempt to
generate a schedule is started.

This algorithm can easily run in parallel to create additional
schedules, by changing the priority rules and selected charge

power order and running several instances in parallel.

2.3. Genetic Algorithm for CPT

The Genetic Algorithm is an improvement type algorithm; it
requires a set of feasible initial schedules, that are constructed with
the heuristics described in the previous section and tries to improve
upon it. In an iterative manner, the population of feasible schedules
evolves by selecting individuals (schedules) to create offspring by
either cross-over or mutation. Only offspring with better fitness
than their parents are accepted for the new generation.

The complexity of the charge scheduling problem requires an
algorithm that is tailored to the needs. Due to the large scale and
complexity of the optimization problem, the randomness in typical

crossover and mutation operators will easily lead to either

infeasible results or too little improvement per generation. Hence,
a sequential mutation method and a partial crossover method are
adopted. To improve computational efficiency, these operations
are processed in parallel for each generation. The extent of
function evaluations involved in mutation and crossover is

substantial enough to offset the parallelization overhead.

3. DIGITAL TWIN

A DT is a virtual model that has a bi-directional exchange of
data between physical and virtual systems. This ensures a good
state of synchronization, while also guaranteeing high accuracy,
real-time performance, and scalability for the prediction
algorithms. Further, it can be used for process optimization,
observation, prediction and maintenance. For a DT of a battery in
an EV, the DT uses sensor data to calibrate itself while the Battery
Management System (BMS) receives feedback to adjust its
operation and control.

Fig. 1 shows the architecture of a battery DT in a charge
planning use-case. The fleet operator can make a prediction
request and use the output to generate a charging schedule for a
fleet of EV. During the operation, the DT can update its parameters
using calibration data from the EV. In this work two DTs are

developed: Battery Aging and Charge Profile Prediction.
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Fig. 1 Architecture of a battery DT for a charge planning use-

case.

3.1. Battery Aging Prediction

Batteries degrade over time, diminishing their ability to store
and deliver energy. This directly impacts the driving range,
performance, and reliability of electric vehicles. The battery aging
prediction DT enables prediction of the capacity degradation of the
battery when subjected to varying operating conditions that
include temperature, State-of-Charge (SoC), Depth-of-Discharge
(DoD) and C-rates. These input conditions can be extracted from
the realistic power profile from the charge profile prediction DT

thereby increasing the accuracy of battery aging prediction. This
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predictive capability is crucial for optimizing battery usage,
enhancing charging strategies, and extending the overall lifespan
of the battery. Fleet operators can use accurate battery aging for
long-term Total Cost of Ownership (TCO) optimization.

At the core of the battery aging prediction DT is a semi-
empirical model of the battery capacity. The model distinguishes
between calendar aging and cyclic aging. Eqn 1 and 2 represent
the capacity loss due to calendar aging and cyclic aging

respectively.
—a,
Qlen = (@1 7= a) - 10°-exp(—2) -5 (1)

QLcyc = (b (z - bz)z +bs-pz+by)-

bS : Crate,ch + b6 : Crate,dch + b7 (2)
exp — T . Qy

The total capacity loss is the sum of the calendar and cyclic
capacity loss. Considering the capacity losses of the battery due to
operating conditions, the total capacity is given by

QL=a- t*+p-Q” 3)

Initial identification of the parameters of the model is
performed using data from laboratory aging experiments on the
battery. Once the battery aging prediction DT is live, the
parameters are re-calibrated periodically using the battery data
obtained from the vehicle in the fleet.

The capacity equation as described in Eqn 3, evaluates the
capacity of the battery with respect to the battery’s capacity at
beginning-of-life. However, applying the battery aging prediction
to the charge planning problem requires predicting the capacity
degradation of the battery during a charging session from the
battery’s current capacity. Hence, the differential form of Eqn 3 is

applied.

3.2. Charge Profile Prediction

The objective of a charge profile prediction DT is to predict the
electrical power during a charging session accurately. The input
for the DT is the start and end SoC, reference charging power and
ambient temperature. The output is the electrical charging power
as a function of time. The primary advantage of this method is the
generation of a realistic power profile as opposed to the standard
profile commonly used by fleet operators (©).

Fig. 2 shows the standard and realistic charging power profile
with the same energy throughput during the charging session. It is
seen that a realistic profile can improve the assessment of the
charge time and grid load while making the charge scheduling

more robust.
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Fig. 2 Charge profile for a charging session.

The predicted charging profile is divided into three segments:
ramp, constant and decay. Each segment is parameterized and the
parameters are identified during the operation of the vehicle at
charging conditions: Start SoC (zs), End SoC (z,), Reference
Charging Power (P,) and Ambient temperature (T,). The real
charge profile can be predicted in a corresponding application for

these conditions (©.

4. RESULTS AND DISCUSSION

The charge scheduling technique is applied to a scenario with a
fleet of 5 EVs and 2 chargers. Each vehicle is assigned 3 trips with
rest periods in between (shown in blue) where the vehicle can be
charged. The vehicle undergoes opportunity charging during the
day and overnight charging at the end of the day when its
stationary at the charging hub. The electricity prices and the total
power available on the grid for charging are considered variable.

The Greedy scheduling method is used as a baseline where the
vehicles are charged on a first come first serve basis to the
maximum possible SoC. This technique is commonly employed
by fleet operators and is shown in Fig. 3. When the DTs are not
used, the fleet can be charged by using only one charger, i.c.,
Charger 1 for all the change requests.

However, the use of DTs enforces a longer charge time and
schedules the fleet differently as shown in Fig. 4. The increase in
SoC is also non-linear with slower rates of increase towards the
beginning and end of charging. In this case, a second Charger 2 is
also used as Charger 1 is unable to finish charging in time to move
to the next charge request. Hence, using the DTs ensures correct
infrastructure planning and improves the robustness of the charge

schedule.
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Fig. 3 Charge scheduling without battery DTs.

The use of DTs within the CPT also optimizes the schedule by
charging the majority of the time when the electricity price is
lower. The optimized schedule saves € 18.8 per vehicle per day
compared to the baseline.

Additionally, during overnight charging, the vehicles are
charged as late as possible with lower power. This is better for
reducing the degradation of the battery due to aging and
maintaining battery performance 7. Hence, using DTs can achieve
a realistic charging schedule that has a clear improvement over the

standard method while reducing the TCO.

5. CONCLUSION
In this work, two battery DTs (Battery Aging and Charge
Profile Prediction) were implemented to a CPT to achieve a

realistic charging schedule for a fleet of EVs.
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Fig. 4 Charge scheduling with battery DTs.

The DTs were calibrated on real data while the CPT
implementation was simulated. The implementation generates a
realistic schedule that is robust and reduces TCO by charging
when electricity prices are lower and late charging during
overnight periods.

Future work will focus on analyzing different objective
functions and applying the method to a larger fleet. Improving the

algorithm for faster implementation will also be analyzed.
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