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ABSTRACT: The transition towards vehicle electrification presents various challenges due to uncertainties in charging behavior 

and battery aging. This study proposes a strategy to generate a charging schedule for a Battery Electric Vehicles (BEVs) fleet to 

reduce the Total Cost of Operation (TCO). Battery Digital Twins (DTs) are used to improve the standard scheduling strategy, which 

provides a realistic assessment of battery aging, grid load, and charging time. The DTs are adaptive, have fast prediction and have 

low training costs. The method is virtually tested to show the improvements in scheduling while using the DTs. 

 

KEY WORDS: Battery Digital Twin, Battery Aging, Battery Charging Profile, Charge Planning  

 

1. INTRODUCTION 

Greenhouse Gas Emission (GGE) are known to cause a 

significant negative impact on the environment and are one of the 

major contributors to climate change (1) due to the prevalent usage 

of Internal Combustion Engine (ICE) in most modern vehicles (2). 

This has led to the enforcement of zero-emission zones in cities 

where only emission-free vehicles are allowed (3). In recent years, 

BEV have been identified as a potential mitigation technology for 

this problem, as they have lower well-to-wheel GGE emissions 

than ICEs (4). However, the complete adoption of BEVs still faces 

several challenges due to uncertainties in modeling charging 

behavior and battery aging. These challenges are particularly 

relevant in commercial applications, such as delivery companies 

and bus operators, which require large fleets of BEVs that could 

benefit from optimal scheduling for cost reduction.  

This work presents a Charge Planning Tool (CPT) that can be 

used for scheduling the charging for a large fleet of BEVs (5). This 

tool is improved by using adaptive DTs which can make realistic 

predictions on battery parameters and self-calibrate during the 

battery lifetime. Finally, a comparison of charging schedules with 

and without the DTs is shown. 

 

2. CHARGE PLANNING TOOL 

The CPT is designed to manage the smart charging of large-

scale Electric Vehicle (EV) fleets, particularly heavy-duty 

commercial trucks and buses, at a single depot or similar facility. 

The objective is to create an optimal charging schedule that 

minimizes costs and maximizes operational efficiency, 

considering limitations such as limited chargers and grid capacity. 

The CPT is suitable for scenarios where vehicles, following a 

logistics schedule, return to a central hub for charging, excluding 

public charging during (round) trips. The logistics planning 

determines the constraints for the charge schedule with specific 

arrival (ETA) and departure times (ETD), and the required energy 

for the scheduled trips. Reliable scheduling requires accurate 

energy consumption estimation, preventing operational disruption 

due to underestimation, and saving time by avoiding unnecessary 

full charges. The CPT generates a feasible charge schedule and 

allocates the charger to the vehicles at a specified time with a 

certain charge profile. The schedule can be optimized for 

operational costs such as electricity price for a variable tariff, or 

battery aging by controlling the charging profile and moment of 

charging. 

 

1.1. Problem statement 

Consider a fleet of N non-homogeneous vehicles and a set of J 

non-homogeneous chargers, given that N > J, and each vehicle 

may drive multiple trips per day. The fleet planning software 

generates a set of K Charge Requests (CR), where kth charge 

request consists of the arrival (𝑡𝑡𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸) and departure time (𝑡𝑡𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸), the 

expected SoC upon arrival 𝑧𝑧𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸  and a minimum SoC that is at 

least required for the next trip 𝑧𝑧𝑘𝑘
𝑟𝑟𝑟𝑟𝑟𝑟  for the corresponding vehicle. 

The problem is subject to constraints relating to a maximum grid 
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capacity 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, maximum charging power 𝑃𝑃𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 for each charger 

𝑥𝑥𝑗𝑗  and a compatibility constraint between chargers and vehicles. 

The CPT maps the set of CR’s to a set of Charge Assignments 

(CA), which contain an allocation to a specific charger 𝑥𝑥𝑗𝑗 , a start 

𝑡𝑡𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠and end time 𝑡𝑡𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒for charging, and a charging power profile 

𝑃𝑃𝑘𝑘, such that the schedule is feasible – constraints are satisfied – 

in a heuristic fashion. Subsequently, the CPT optimizes the 

operational cost and efficiency of the schedule on factors such as 

electricity price, battery lifetime, peak shaving, and schedule 

flexibility (i.e., implementing slack time to account for 

unpredicted deviations). 

 

2.2. Fast initialization algorithm 

Evaluating the feasibility of the logistics plan on the charger 

allocation problem requires a computationally efficient solution. 

The proposed heuristic method is inspired by Multi-Processor 

Scheduling Problems (MSP), where the similarity is drawn 

between available tasks versus charge requests, processors versus 

chargers, and processing speed versus charging power. The charge 

requests are sorted and given a priority according to their laxity, 

deadline, arrival time, or other user-defined objectives, and the 

chargers are sorted on power levels, either in ascending or 

descending order. The algorithm then loops through each one of 

the charge requests, trying to assign them to chargers, according 

to the previously decided order of priority. In case the assignment 

is feasible, it will be saved in the CA. Otherwise, a different charge 

power or charger is selected. In case the assignment fails, the 

priority and order need to be updated, and a new attempt to 

generate a schedule is started. 

This algorithm can easily run in parallel to create additional 

schedules, by changing the priority rules and selected charge 

power order and running several instances in parallel.  

 

2.3. Genetic Algorithm for CPT 

The Genetic Algorithm is an improvement type algorithm; it 

requires a set of feasible initial schedules, that are constructed with 

the heuristics described in the previous section and tries to improve 

upon it. In an iterative manner, the population of feasible schedules 

evolves by selecting individuals (schedules) to create offspring by 

either cross-over or mutation. Only offspring with better fitness 

than their parents are accepted for the new generation.  

The complexity of the charge scheduling problem requires an 

algorithm that is tailored to the needs. Due to the large scale and 

complexity of the optimization problem, the randomness in typical 

crossover and mutation operators will easily lead to either 

infeasible results or too little improvement per generation. Hence, 

a sequential mutation method and a partial crossover method are 

adopted. To improve computational efficiency, these operations 

are processed in parallel for each generation. The extent of 

function evaluations involved in mutation and crossover is 

substantial enough to offset the parallelization overhead. 

 

3. DIGITAL TWIN 

A DT is a virtual model that has a bi-directional exchange of 

data between physical and virtual systems. This ensures a good 

state of synchronization, while also guaranteeing high accuracy, 

real-time performance, and scalability for the prediction 

algorithms. Further, it can be used for process optimization, 

observation, prediction and maintenance. For a DT of a battery in 

an EV, the DT uses sensor data to calibrate itself while the Battery 

Management System (BMS) receives feedback to adjust its 

operation and control. 

Fig. 1 shows the architecture of a battery DT in a charge 

planning use-case. The fleet operator can make a prediction 

request and use the output to generate a charging schedule for a 

fleet of EV. During the operation, the DT can update its parameters 

using calibration data from the EV. In this work two DTs are 

developed: Battery Aging and Charge Profile Prediction. 

 

 
Fig. 1  Architecture of a battery DT for a charge planning use-

case. 

 

3.1. Battery Aging Prediction 

Batteries degrade over time, diminishing their ability to store 

and deliver energy. This directly impacts the driving range, 

performance, and reliability of electric vehicles. The battery aging 

prediction DT enables prediction of the capacity degradation of the 

battery when subjected to varying operating conditions that 

include temperature, State-of-Charge (SoC), Depth-of-Discharge 

(DoD) and C-rates. These input conditions can be extracted from 

the realistic power profile from the charge profile prediction DT 

thereby increasing the accuracy of battery aging prediction. This 
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predictive capability is crucial for optimizing battery usage, 

enhancing charging strategies, and extending the overall lifespan 

of the battery. Fleet operators can use accurate battery aging for 

long-term Total Cost of Ownership (TCO) optimization. 

At the core of the battery aging prediction DT is a semi-

empirical model of the battery capacity. The model distinguishes 

between calendar aging and cyclic aging. Eqn 1 and 2 represent 

the capacity loss due to calendar aging and cyclic aging 

respectively. 

 𝑄𝑄𝐿𝐿cal = (𝑎𝑎1 ⋅ 𝑧𝑧 − 𝑎𝑎2) ⋅ 106 ⋅ exp (−𝑎𝑎3
𝑇𝑇 ) ⋅ 𝑡𝑡𝑥𝑥 (1) 

 
𝑄𝑄𝐿𝐿cyc = (𝑏𝑏1(𝑧𝑧 − 𝑏𝑏2)2 + 𝑏𝑏3 ⋅ 𝜙𝜙𝜙𝜙 + 𝑏𝑏4) ⋅ 

𝑒𝑒𝑒𝑒𝑒𝑒 − (𝑏𝑏5 ⋅ 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑐𝑐ℎ + 𝑏𝑏6 ⋅ 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑𝑑𝑑ℎ + 𝑏𝑏7
𝑇𝑇 ) ⋅ 𝑄𝑄𝑦𝑦 

(2) 

 

The total capacity loss is the sum of the calendar and cyclic 

capacity loss. Considering the capacity losses of the battery due to 

operating conditions, the total capacity is given by 

 𝑄𝑄𝑄𝑄 = 𝛼𝛼 ⋅  𝑡𝑡𝑥𝑥 + 𝛽𝛽 ⋅ 𝑄𝑄𝑦𝑦 (3) 

Initial identification of the parameters of the model is 

performed using data from laboratory aging experiments on the 

battery. Once the battery aging prediction DT is live, the 

parameters are re-calibrated periodically using the battery data 

obtained from the vehicle in the fleet. 

The capacity equation as described in Eqn 3, evaluates the 

capacity of the battery with respect to the battery’s capacity at 

beginning-of-life. However, applying the battery aging prediction 

to the charge planning problem requires predicting the capacity 

degradation of the battery during a charging session from the 

battery’s current capacity. Hence, the differential form of Eqn 3 is 

applied. 

 

3.2. Charge Profile Prediction 

The objective of a charge profile prediction DT is to predict the 

electrical power during a charging session accurately. The input 

for the DT is the start and end SoC, reference charging power and 

ambient temperature. The output is the electrical charging power 

as a function of time. The primary advantage of this method is the 

generation of a realistic power profile as opposed to the standard 

profile commonly used by fleet operators (6). 

Fig. 2 shows the standard and realistic charging power profile 

with the same energy throughput during the charging session. It is 

seen that a realistic profile can improve the assessment of the 

charge time and grid load while making the charge scheduling 

more robust. 

 

 
Fig. 2  Charge profile for a charging session. 

 

The predicted charging profile is divided into three segments: 

ramp, constant and decay. Each segment is parameterized and the 

parameters are identified during the operation of the vehicle at 

charging conditions: Start SoC (𝑧𝑧𝑠𝑠 ), End SoC (𝑧𝑧𝑒𝑒 ), Reference 

Charging Power (𝑃𝑃𝑐𝑐 ) and Ambient temperature (𝑇𝑇𝑎𝑎 ). The real 

charge profile can be predicted in a corresponding application for 

these conditions (6). 

 

4. RESULTS AND DISCUSSION 

The charge scheduling technique is applied to a scenario with a 

fleet of 5 EVs and 2 chargers. Each vehicle is assigned 3 trips with 

rest periods in between (shown in blue) where the vehicle can be 

charged. The vehicle undergoes opportunity charging during the 

day and overnight charging at the end of the day when its 

stationary at the charging hub. The electricity prices and the total 

power available on the grid for charging are considered variable. 

The Greedy scheduling method is used as a baseline where the 

vehicles are charged on a first come first serve basis to the 

maximum possible SoC. This technique is commonly employed 

by fleet operators and is shown in Fig. 3. When the DTs are not 

used, the fleet can be charged by using only one charger, i.e., 

Charger 1 for all the change requests. 

However, the use of DTs enforces a longer charge time and 

schedules the fleet differently as shown in Fig. 4. The increase in 

SoC is also non-linear with slower rates of increase towards the 

beginning and end of charging. In this case, a second Charger 2 is 

also used as Charger 1 is unable to finish charging in time to move 

to the next charge request. Hence, using the DTs ensures correct 

infrastructure planning and improves the robustness of the charge 

schedule. 
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Fig. 3  Charge scheduling without battery DTs. 

 

The use of DTs within the CPT also optimizes the schedule by 

charging the majority of the time when the electricity price is 

lower. The optimized schedule saves € 18.8 per vehicle per day 

compared to the baseline. 

Additionally, during overnight charging, the vehicles are 

charged as late as possible with lower power. This is better for 

reducing the degradation of the battery due to aging and 

maintaining battery performance (7). Hence, using DTs can achieve 

a realistic charging schedule that has a clear improvement over the 

standard method while reducing the TCO. 

 

5. CONCLUSION 

In this work, two battery DTs (Battery Aging and Charge 

Profile Prediction) were implemented to a CPT to achieve a 

realistic charging schedule for a fleet of EVs.  

 
 

Fig. 4  Charge scheduling with battery DTs. 

 

The DTs were calibrated on real data while the CPT 

implementation was simulated. The implementation generates a 

realistic schedule that is robust and reduces TCO by charging 

when electricity prices are lower and late charging during 

overnight periods. 

Future work will focus on analyzing different objective 

functions and applying the method to a larger fleet. Improving the 

algorithm for faster implementation will also be analyzed. 
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