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ABSTRACT: This paper proposed a new method to define and to evaluate the State of Health (SOH) of fuel cells (FC) in hydrogen-
powered vehicles. The proposed SOH estimation uses Long Short-Term Memory (LSTM) networks to monitor FC voltage degradation,
while lithium battery SOH is based on electric capacity loss. To optimize energy management, an advanced Energy Management System
(EMS) is developed by combining an Artificial Neural Network (ANN) with the Equivalent Consumption Minimization Strategy (ECMS).
This EMS considers both SOHs for FCs and batteries in order to extending battery life and improving vehicle mileage. A rule-based
control strategy is also provided for comparison. Simulations are under two scenarios: (1) at FC SOH is high (100%) and battery SOH is
low (80%), ECMS and ANN-ECMS reduce hydrogen consumption by about 37% and 32%, respectively, which are compared to the
baseline cases; (2) at FC SOH is low (80%) and battery SOH remains high (100%), these methods achieve reductions of approximately
39% and 32%, respectively.
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1. INTRODUCTION

The evaluation of the State of Health (SOH) of fuel cells is a
critical topic in fuel cell lifecycle management. Numerous studies
have investigated voltage degradation, increased hydrogen
consumption, and cumulative power generation, providing a
foundation and inspiration for this research. For example, Barbir,
in his work, described in detail the characteristics of fuel cell
performance degradation, particularly the trend of voltage declines
with usage over time, and explored the effects of pressure and
humidity on the V-I curve [1]. This serves as theoretical support
for the voltage degradation evaluation model in this study. Several
studies have highlighted how the degradation of the V-I curve
leads to reduced fuel cell lifespan. For instance, research in [2]
demonstrated that after conducting a 640-hour cyclic test at 100A
current, the total voltage decreased by approximately 4V,
representing a stack voltage drop of 6.9% over time. Meanwhile,

reference [3] analyzed the performance degradation of proton

exchange membrane fuel cells (PEMFCs) under dynamic load
cycles, showing that the time-variant voltage curve during driving
cycles reflects the cell's performance. Periodic measurements of
polarization curves revealed variations in degradation rates at
different operational stages, with significant performance decline
after 280 hours of operation. In [4], the steady-state performance
and transient responses of PEMFC under various load cycles and
operational conditions were investigated. Critical parameters such
as polarization curves, gas flow rates, temperatures, pressure drop,
and relative humidity were controlled and measured to analyze
their effects on the V-I curve. This study utilized the test data
provided by [5] to establish a model for assessing the impacts of
pressure, humidity, and time on SOH aging. Additionally, Kahia
et al. proposed a hybrid method combining electrochemical
impedance spectroscopy (EIS), polarization curve parameters, and
artificial neural networks to estimate and diagnose the SOH of

PEM fuel cells [6]. Their model effectively identifies parameter
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changes under varying humidity conditions, aiding in water
management and SOH definition. In our research on fuel cell
health management using neural networks, we demonstrate that
pressure, humidity, and voltage data can effectively train a LSTM

model to predict SOH and estimate voltage degradation rates.

2. VEHICLE CONFIGURARTION
This study drew on the Honda CR-V e:FCEV as a reference
for modeling [7]. It consists of a lithium battery, a fuel cell, and an
electric motor to develop an FCEV model. The configuration of
the FCEV is illustrated in Fig. 1, with the corresponding

parameters detailed in Table 1.
Table 1 Main parameter of Honda CR-V e:FCEV

Parameter Value/Unit
Vehicle specifications

Mass 2,023 kilograms
Frontal area 2.25m?
Aerodynamic drag coefficient 0.32 Ns*m?
Rolling resistance coefficient 0.01

Air density 1.225 kg/m?
Radius of the wheel 0.3511m
Gearbox specifications

Reduction ratio 10.255:1
Electric machine specifications

Maximum power 129.75kW
Maximum torque 310Nm
Fuel cell specifications

Maximum power 92.2kW
Battery specifications

Nominal voltage 347.5V
Capacity 17.7 kWh
Maximum power 88.5kW

2.1. Dynamic modeling

This study developed a MATLAB/SIMULINK model for the
EMS of Honda CR-V e:FCEV, simulating key subsystems such as
the EMS, electric motor, DC-DC converter, lithium battery, and
fuel cell modules, along with SOH estimators for the batteries and
fuel cells. The control-oriented system achieves closed-loop
energy distribution, validated using the EPA Urban Dynamometer

Driving Schedule (UDDS).
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Fig. 1 Fuel cell electric vehicle simulation in SIMULINK
2.2. State of Health (SOH) estimation

This study proposed an evaluation metrics to assess the
degradation of fuel cell health: voltage degradation rate.
Considering practical application needs, we designed an offline
update mechanism to reduce unnecessary computational burden
and conserve MCU memory resources. Specifically, the voltage
degradation rate is updated during vehicle startup (key on) or
shutdown (key off), while the total power generation degradation
is calculated in real-time based on the cumulative energy

consumption of the fuel cell.

2.2.1. SOH estimation model for fuel cells

The evaluation method for the voltage degradation rate was
defined by Equation (1), where V;, represents the unaged voltage
(ideal voltage) and V; represents the aged voltage (actual voltage),
used to define the voltage degradation SOH based on the voltage
differences across the V-1 curve, as shown in Figure 2. To
estimate SOH, fuel cell pressure, relative humidity, temperature,
and cumulative energy are input into an LSTM neural network for
training, with voltage as the output. The LSTM architecture,
depicted in Figure 3, consists of a single hidden layer with 32
neurons. The network is trained with a batch size of 64 for 25
epochs. LSTM networks are well-suited for time-series prediction,
as they can capture long-term dependencies in sequential data.
This enables the model to effectively track voltage degradation

and assess the fuel cell’s SOH over time.
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Fig. 2 Fuel cell V-I curve

Fig. 3 LSTM architecture of fuel cell SOH estimation
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2.2.1. SOH estimation model for batteries
The evaluation method for total power generation

degradation is shown in Equation (2). It calculates E;,; based on

the lithium battery's total lifespan at the time of manufacture and

its rated power. By integrating the power consumed of the lithium

battery per second, the total degradation in power generation is

obtained and defined as the lithium battery health degradation rate.
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3. ENERGY MANAGAMENT STRATEGY
3.1. Rule-based control (RB)

Energy distribution is managed using a Rule-Based Control
(RBC) strategy based on the vehicle speed, battery State of Charge
(SOC), and State of Health (SOH) of both the fuel cell and battery.
In “High-Speed Mode”, power is shared between the fuel cell and
battery. A healthier battery leads to a balanced split, while a
weaker battery relies more on the fuel cell. In “Hybrid Mode”, the
battery takes a main role, but power distribution adjusts based on
SOH. In “Low-Speed Mode”, the battery supplies most of the
power, with minimal fuel cell support if needed. In “Battery
Charge Mode” (SOC < 30%), the fuel cell prioritizes charging the
battery while still powering the vehicle.

Table 2 Rule-based operation modes

Condition Execution Mode
. Pr. =0.5P,
High SOH P;at _0.5p,

V> 60 Low battery Pr. =0.6P,4 High-speed
(km/h) SOH Poar = 0.4P, mode
Low FC Prc=0.4P,

SOH Ppae =0.6P4
. Pr.=0.3P,
High SOH szat _ 0P,
60>V, > | Low battery P =0.6P,4 Hybrid
30 (km/h) SOH Ppor = 0.4P, mode
Low FC Pre=0.2Py
SOH Ppae =0.8P4
. Pre=0
High SOH Pyt = Py
V3 <30 Low battery Prc=0.1Py Low-speed
(km/h) SOH Ppar =0.9P, Mode
Low FC Pre=0
SOH Ppat =Py
ch _:P‘(i) Battery
SOC<03 | ANSOH | , 2% (max) | charee
fezb Pf ¢ mode
- g

3.1. Equivalent consumption minimization strategy (ECMS)
This study adopted equivalent consumption minimization
strategy (ECMS) to optimize energy distribution in the energy
management strategy. The algorithm exhaustively computes
parameter variations across a defined range using a five-for-loop
structure, as shown in Figure 4. A custom cost function, described
in Equation (3) and (4), incorporates factors related to SOH of fuel
cell, SOC and SOH of battery, as detailed in Equations (5) and (6).
The optimal energy distribution ratio, expressed as the power
allocation between the fuel cell and the total power demand, is

determined using these factors and is illustrated in Equation (7).
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Fig. 4 Five-for-loop structure for ECMS
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The hydrogen-specific consumption for the battery, derived
from Equation (8), SC, (gram/kWh), represents the average
hydrogen required to store 1 kWh of electrochemical energy in the

battery.

— SCrc
b EffchEffch,b ( )

where SC represents the fuel cell average specific consumption,

converting fuel into electrical energy. Ef f,,. denotes the average
efficiency of power converter, while m reflects the average
charging efficiency of the battery. When the power is positive
(battery currently discharging):

SCy x Py

- 3600 x EfdeS_b (9)

1,

When the power is negative (battery currently charging):
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3.3. Artificial Neural Network based Equivalent consumption

minimization strategy (ANN-ECMS)

my

As the dimension of ECMS increases, it becomes
increasingly challenging for the VCU to process it efficiently. To
implement this control strategy in real-world applications,
significant MCU memory saving is required. Therefore, an ANN-
based ECMS that leverages artificial neural networks to predict the
equivalence factor @, enabling efficient power management was
proposed.

The ANN takes power demand (Py), battery SOC, fuel cell
SOH, and lithium battery SOH as inputs, dynamically adjusting a
to optimize energy distribution. This approach reduces memory
consumption, enhances computational efficiency, and improves
adaptability to varying driving conditions, ensuring real-time
feasibility and optimal energy utilization. The architecture is

presented in Figure 5.

Fig. 5 Acritical neural network architecture of ANN-ECMS

4. RESULTS

4.1. Data analysis of LSTM model of FC SOH

Figures 6 and 7 illustrate the LSTM model’s voltage
prediction performance and residual analysis for fuel cell SOH
estimation. The predicted voltage closely follows the actual trend
in both training and testing phases, with minor deviations. The
residual distribution is centered around zero, indicating high
prediction accuracy, though slight variations suggest room for
refinement. These results confirm the LSTM model’s reliability in
capturing long-term degradation patterns, making it a useful tool

for SOH estimation in fuel cell systems.
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Fig. 6 Voltage estimation of fuel cell
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Fig. 7 Residual analysis for fuel cell SOH estimation

4.2. Comparison of baseline control, ECMS, and ANN-ECMS
Figures 8 and 9 illustrate the equivalent hydrogen
consumption and power split for Case I (high FC SOH, low battery
SOH). As shown in Table 4, the baseline RBC is with the highest
hydrogen consumption (189.72g). The ANN-ECMS reduces
hydrogen consumption by 31.93% (129.15g), while ECMS
achieves the best reduction of 36.86% (119.78 g). ANN-ECMS
closely follows ECMS and performs significantly better than RBC,
demonstrating its efficiency in adapting to SOH variations while

optimizing power distribution.
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Fig. 8 Equivalent Hydrogen consumption of case |
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Similarly, Figures 10 and 11 present results for Case II (low

FC SOH, high battery SOH). As shown in Table 5, ANN-ECMS
continues to follow ECMS closely, achieving a 31.85% reduction
in hydrogen consumption, while ECMS reaches 39.22%, both
significantly better than that of RBC. These results confirm that
ECMS and ANN-ECMS provide major fuel efficiency
improvements, with ANN-ECMS serving as a more adaptive and

practical alternative to ECMS by integrating SOH considerations

into energy management.
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Fig. 10 Equivalent Hydrogen consumption of case II
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Fig. 11 Power Split of case II

Table 4 Equivalent hydrogen consumption/improvement

Equivalent hydrogen Improvement
Case I .

consumption (g) (%)
RB 189.72 -
ANN-ECMS 129.15 31.92%
ECMS 119.78 36.86%

Table 5 Equivalent hydrogen consumption/improvement

Equivalent hydrogen Improvement
Case II

consumption (g) (%)
RB 187.83 -
ANN-ECMS 128.00 31.85%
ECMS 114.16 39.22%

5. CONCLUSIONS
This study implemented an online optimal control strategy
using ECMS for fuel cell electric vehicles. The key contributions
are summarized as follows:
(1) Design and define both SOH estimators for fuel cells and
lithium batteries:

We defined SOH estimators for fuel cells and lithium batteries,
using voltage degradation for fuel cells and capacity performance
for lithium batteries to ensure accurate and efficient health
monitoring.

(2) Four-mode rule-based control:

The four-mode rule-based control operates in high-speed mode,
hybrid mode, low-speed mode, and battery charge mode,
depending on the vehicle velocity and battery SOC. It determines
two key outputs: the required fuel cell power and battery power.
(3) Hydrogen consumption improvement of ANN-ECMS/ECMS

with SOH:

The results indicate that different battery health levels affect
energy distribution. The EMS distributes power to extend the
lifespan of both the fuel cell and the lithium battery and improve

approximately 30 to 40% of equivalent hydrogen consumption.
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