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ABSTRACT: This paper proposed a new method to define and to evaluate the State of Health (SOH) of fuel cells (FC) in hydrogen-

powered vehicles. The proposed SOH estimation uses Long Short-Term Memory (LSTM) networks to monitor FC voltage degradation, 

while lithium battery SOH is based on electric capacity loss. To optimize energy management, an advanced Energy Management System 

(EMS) is developed by combining an Artificial Neural Network (ANN) with the Equivalent Consumption Minimization Strategy (ECMS). 

This EMS considers both SOHs for FCs and batteries in order to extending battery life and improving vehicle mileage. A rule-based 

control strategy is also provided for comparison. Simulations are under two scenarios: (1) at FC SOH is high (100%) and battery SOH is 

low (80%), ECMS and ANN-ECMS reduce hydrogen consumption by about 37% and 32%, respectively, which are compared to the 

baseline cases; (2) at FC SOH is low (80%) and battery SOH remains high (100%), these methods achieve reductions of approximately 

39% and 32%, respectively. 

KEY WORDS: Artificial Neural Network, equivalent consumption minimization strategy, State of Heath estimation, energy management, 

fuel cell, fuel cell electric vehicles 

 

1. INTRODUCTION 

The evaluation of the State of Health (SOH) of fuel cells is a 

critical topic in fuel cell lifecycle management. Numerous studies 

have investigated voltage degradation, increased hydrogen 

consumption, and cumulative power generation, providing a 

foundation and inspiration for this research. For example, Barbir, 

in his work, described in detail the characteristics of fuel cell 

performance degradation, particularly the trend of voltage declines 

with usage over time, and explored the effects of pressure and 

humidity on the V-I curve [1]. This serves as theoretical support 

for the voltage degradation evaluation model in this study. Several 

studies have highlighted how the degradation of the V-I curve 

leads to reduced fuel cell lifespan. For instance, research in [2] 

demonstrated that after conducting a 640-hour cyclic test at 100A 

current, the total voltage decreased by approximately 4V, 

representing a stack voltage drop of 6.9% over time. Meanwhile, 

reference [3] analyzed the performance degradation of proton 

exchange membrane fuel cells (PEMFCs) under dynamic load 

cycles, showing that the time-variant voltage curve during driving 

cycles reflects the cell's performance. Periodic measurements of 

polarization curves revealed variations in degradation rates at 

different operational stages, with significant performance decline 

after 280 hours of operation. In [4], the steady-state performance 

and transient responses of PEMFC under various load cycles and 

operational conditions were investigated. Critical parameters such 

as polarization curves, gas flow rates, temperatures, pressure drop, 

and relative humidity were controlled and measured to analyze 

their effects on the V-I curve. This study utilized the test data 

provided by [5] to establish a model for assessing the impacts of 

pressure, humidity, and time on SOH aging. Additionally, Kahia 

et al. proposed a hybrid method combining electrochemical 

impedance spectroscopy (EIS), polarization curve parameters, and 

artificial neural networks to estimate and diagnose the SOH of 

PEM fuel cells [6]. Their model effectively identifies parameter 
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changes under varying humidity conditions, aiding in water 

management and SOH definition. In our research on fuel cell 

health management using neural networks, we demonstrate that 

pressure, humidity, and voltage data can effectively train a LSTM 

model to predict SOH and estimate voltage degradation rates.  

 

2. VEHICLE CONFIGURARTION  

This study drew on the Honda CR-V e:FCEV as a reference 

for modeling [7]. It consists of a lithium battery, a fuel cell, and an 

electric motor to develop an FCEV model. The configuration of 

the FCEV is illustrated in Fig. 1, with the corresponding 

parameters detailed in Table 1. 

 

2.1. Dynamic modeling  

This study developed a MATLAB/SIMULINK model for the 

EMS of Honda CR-V e:FCEV, simulating key subsystems such as 

the EMS, electric motor, DC-DC converter, lithium battery, and 

fuel cell modules, along with SOH estimators for the batteries and 

fuel cells. The control-oriented system achieves closed-loop 

energy distribution, validated using the EPA Urban Dynamometer 

Driving Schedule (UDDS). 

 
Fig. 1 Fuel cell electric vehicle simulation in SIMULINK 

2.2. State of Health (SOH) estimation 

This study proposed an evaluation metrics to assess the 

degradation of fuel cell health: voltage degradation rate. 

Considering practical application needs, we designed an offline 

update mechanism to reduce unnecessary computational burden 

and conserve MCU memory resources. Specifically, the voltage 

degradation rate is updated during vehicle startup (key on) or 

shutdown (key off), while the total power generation degradation 

is calculated in real-time based on the cumulative energy 

consumption of the fuel cell. 

 

2.2.1. SOH estimation model for fuel cells 

The evaluation method for the voltage degradation rate was 

defined by Equation (1), where 𝑉𝑉0 represents the unaged voltage 

(ideal voltage) and 𝑉𝑉𝑡𝑡 represents the aged voltage (actual voltage), 

used to define the voltage degradation SOH based on the voltage 

differences across the V−I curve, as shown in Figure 2. To 

estimate SOH, fuel cell pressure, relative humidity, temperature, 

and cumulative energy are input into an LSTM neural network for 

training, with voltage as the output. The LSTM architecture, 

depicted in Figure 3, consists of a single hidden layer with 32 

neurons. The network is trained with a batch size of 64 for 25 

epochs. LSTM networks are well-suited for time-series prediction, 

as they can capture long-term dependencies in sequential data. 

This enables the model to effectively track voltage degradation 

and assess the fuel cell’s SOH over time. 

 
Fig. 2 Fuel cell V−I curve 

 
Fig. 3 LSTM architecture of fuel cell SOH estimation 

Table 1 Main parameter of Honda CR-V e:FCEV  

Parameter Value/Unit 
Vehicle specifications 
Mass 
Frontal area 
Aerodynamic drag coefficient 
Rolling resistance coefficient 
Air density 
Radius of the wheel 
Gearbox specifications 
Reduction ratio 
Electric machine specifications 
Maximum power 
Maximum torque 
Fuel cell specifications 
Maximum power 

 
2,023 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 
         2.25 𝑚𝑚2 

0.32 𝑁𝑁𝑠𝑠2𝑚𝑚2 
 0.01 

1.225 𝑘𝑘𝑘𝑘/𝑚𝑚3 
     0.3511𝑚𝑚 

 
10.255: 1 

 
129.75𝑘𝑘𝑘𝑘 

310𝑁𝑁𝑁𝑁 
 

92.2𝑘𝑘𝑘𝑘  
Battery specifications  
Nominal voltage 347.5𝑉𝑉 
Capacity  
Maximum power 

17.7 𝑘𝑘𝑘𝑘ℎ 
88.5𝑘𝑘𝑘𝑘 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓 = 1 − 𝑉𝑉0 − 𝑉𝑉𝑡𝑡
𝑉𝑉0

= 𝑉𝑉𝑡𝑡
𝑉𝑉0

 (1) 

 

2.2.1. SOH estimation model for batteries 

The evaluation method for total power generation 

degradation is shown in Equation (2). It calculates 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 based on 

the lithium battery's total lifespan at the time of manufacture and 

its rated power. By integrating the power consumed of the lithium 

battery per second, the total degradation in power generation is 

obtained and defined as the lithium battery health degradation rate.  

𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸 =  
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 − ∫ 𝑃𝑃𝑓𝑓𝑓𝑓(𝑡𝑡) ⅆ𝑡𝑡𝑡𝑡

0
3600000

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡
(2) 

 
3. ENERGY MANAGAMENT STRATEGY 

3.1. Rule-based control (RB) 

Energy distribution is managed using a Rule-Based Control 

(RBC) strategy based on the vehicle speed, battery State of Charge 

(SOC), and State of Health (SOH) of both the fuel cell and battery. 

In “High-Speed Mode”, power is shared between the fuel cell and 

battery. A healthier battery leads to a balanced split, while a 

weaker battery relies more on the fuel cell. In “Hybrid Mode”, the 

battery takes a main role, but power distribution adjusts based on 

SOH. In “Low-Speed Mode”, the battery supplies most of the 

power, with minimal fuel cell support if needed. In “Battery 

Charge Mode” (SOC ≤ 30%), the fuel cell prioritizes charging the 

battery while still powering the vehicle.   

Table 2 Rule-based operation modes 

Condition Execution Mode 

𝑉𝑉𝑑𝑑 > 60 
(km/h) 

High SOH 𝑃𝑃𝑓𝑓𝑓𝑓 = 0.5𝑃𝑃𝑑𝑑 
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 = 0.5𝑃𝑃𝑑𝑑  

High-speed 
mode 

Low battery 
SOH 

𝑃𝑃𝑓𝑓𝑓𝑓 = 0.6𝑃𝑃𝑑𝑑  
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 = 0.4𝑃𝑃𝑑𝑑  

Low FC 
SOH 

𝑃𝑃𝑓𝑓𝑓𝑓 = 0.4𝑃𝑃𝑑𝑑  
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 = 0.6𝑃𝑃𝑑𝑑 

60 ≥ 𝑉𝑉𝑑𝑑 > 
30 (km/h) 

High SOH 𝑃𝑃𝑓𝑓𝑓𝑓 = 0.3𝑃𝑃𝑑𝑑  
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 = 0.7𝑃𝑃𝑑𝑑  

Hybrid 
mode 

Low battery 
SOH 

𝑃𝑃𝑓𝑓𝑓𝑓 = 0.6𝑃𝑃𝑑𝑑  
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 = 0.4𝑃𝑃𝑑𝑑 

Low FC 
SOH 

𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2𝑃𝑃𝑑𝑑  
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 = 0.8𝑃𝑃𝑑𝑑 

𝑉𝑉𝑑𝑑 ≤ 30 
(km/h) 

High SOH 𝑃𝑃𝑓𝑓𝑓𝑓 = 0 
  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑃𝑃𝑑𝑑  

Low-speed 
Mode 

Low battery 
SOH 

𝑃𝑃𝑓𝑓𝑓𝑓 = 0.1𝑃𝑃𝑑𝑑  
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 = 0.9𝑃𝑃𝑑𝑑 

Low FC 
SOH 

𝑃𝑃𝑓𝑓𝑓𝑓 = 0 
  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑃𝑃𝑑𝑑 

SOC ≤ 0.3 All SOH 

𝑃𝑃𝑓𝑓𝑓𝑓 = 𝑃𝑃𝑑𝑑  
 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 = 0   

𝑃𝑃𝑓𝑓𝑓𝑓2𝑏𝑏 = 𝑃𝑃𝑓𝑓𝑓𝑓(max) 
- 𝑃𝑃𝑑𝑑 

Battery 
charge 
mode 

. 

3.1. Equivalent consumption minimization strategy (ECMS) 

This study adopted equivalent consumption minimization 

strategy (ECMS) to optimize energy distribution in the energy 

management strategy. The algorithm exhaustively computes 

parameter variations across a defined range using a five-for-loop 

structure, as shown in Figure 4. A custom cost function, described 

in Equation (3) and (4), incorporates factors related to SOH of fuel 

cell, SOC and SOH of battery, as detailed in Equations (5) and (6). 

The optimal energy distribution ratio, expressed as the power 

allocation between the fuel cell and the total power demand, is 

determined using these factors and is illustrated in Equation (7). 

 
Fig. 4   Five-for-loop structure for ECMS 

𝐽𝐽 = 𝑚̇𝑚𝑓𝑓𝑓𝑓 + 𝑚̇𝑚𝑏𝑏 + 𝛾𝛾 (3) 
𝐽𝐽∗ = 𝑚𝑚𝑚𝑚𝑚𝑚

𝛼𝛼
[𝑚̇𝑚𝑓𝑓𝑓𝑓 + 𝑚̇𝑚𝑏𝑏] + 𝛾𝛾 (4) 

𝑚̇𝑚𝑓𝑓𝑓𝑓 = 𝑚̇𝑚𝑓𝑓𝑓𝑓(𝑑𝑑𝑑𝑑𝑑𝑑) × 1
𝜂𝜂𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓) × 𝑓𝑓𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓) (5) 

𝑚̇𝑚𝑏𝑏 = 𝑚̇𝑚𝑏𝑏(𝑐𝑐ℎ𝑔𝑔) × 𝜂𝜂𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏) × 𝑥𝑥 × 𝑓𝑓𝑏𝑏(𝑐𝑐ℎ𝑔𝑔)(𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏) × 𝑓𝑓𝑏𝑏(𝑐𝑐ℎ𝑔𝑔)(𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏)

+𝑚̇𝑚𝑏𝑏(𝑑𝑑𝑑𝑑𝑑𝑑) × 1
𝜂𝜂𝑏𝑏

× (1 − 𝑥𝑥) × 𝑓𝑓𝑏𝑏(𝑑𝑑𝑑𝑑𝑑𝑑)(𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏) × 𝑓𝑓𝑏𝑏(𝑑𝑑𝑑𝑑𝑑𝑑)(𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏)  (6)  

𝛼𝛼 =
𝑃𝑃𝑓𝑓𝑓𝑓
𝑃𝑃𝑑𝑑

(7) 

The hydrogen-specific consumption for the battery, derived 

from Equation (8), 𝑆𝑆𝑆𝑆𝑏𝑏̅̅ ̅̅ ̅  (gram/kWh), represents the average 

hydrogen required to store 1 kWh of electrochemical energy in the 

battery.  

 𝑆𝑆𝑆𝑆𝑏𝑏̅̅ ̅̅ ̅ = 𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓̅̅ ̅̅ ̅̅ ̅
𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝̅̅ ̅̅ ̅̅ ̅̅ ×𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐ℎ_𝑏𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (8) 

where  𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓̅̅ ̅̅ ̅̅  represents the fuel cell average specific consumption, 

converting fuel into electrical energy. 𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝̅̅ ̅̅ ̅̅ ̅ denotes the average 

efficiency of power converter, while 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐ℎ_𝑏𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅  reflects the average 

charging efficiency of the battery. When the power is positive 

(battery currently discharging): 

𝑚̇𝑚𝑏𝑏 =
𝑆𝑆𝑆𝑆𝑏𝑏̅̅ ̅̅ ̅ × 𝑃𝑃𝑏𝑏

3600 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑_𝑏𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (9) 

When the power is negative (battery currently charging): 
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𝑚̇𝑚𝑏𝑏 =
𝑆𝑆𝑆𝑆𝑏𝑏̅̅ ̅̅ ̅ × 𝑃𝑃𝑏𝑏 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐ℎ_𝑏𝑏

3600 (10) 

3.3. Artificial Neural Network based Equivalent consumption 

minimization strategy (ANN-ECMS) 

As the dimension of ECMS increases, it becomes 

increasingly challenging for the VCU to process it efficiently. To 

implement this control strategy in real-world applications, 

significant MCU memory saving is required. Therefore, an ANN-

based ECMS that leverages artificial neural networks to predict the 

equivalence factor 𝛼𝛼, enabling efficient power management was 

proposed. 

The ANN takes power demand (𝑃𝑃𝑑𝑑), battery SOC, fuel cell 

SOH, and lithium battery SOH as inputs, dynamically adjusting 𝛼𝛼 

to optimize energy distribution. This approach reduces memory 

consumption, enhances computational efficiency, and improves 

adaptability to varying driving conditions, ensuring real-time 

feasibility and optimal energy utilization. The architecture is 

presented in Figure 5. 

 

 
Fig. 5 Acritical neural network architecture of ANN-ECMS  

 

4. RESULTS  

4.1. Data analysis of LSTM model of FC SOH 

Figures 6 and 7 illustrate the LSTM model’s voltage 

prediction performance and residual analysis for fuel cell SOH 

estimation. The predicted voltage closely follows the actual trend 

in both training and testing phases, with minor deviations. The 

residual distribution is centered around zero, indicating high 

prediction accuracy, though slight variations suggest room for 

refinement. These results confirm the LSTM model’s reliability in 

capturing long-term degradation patterns, making it a useful tool 

for SOH estimation in fuel cell systems. 

 
Fig. 6   Voltage estimation of fuel cell  

 
Fig. 7   Residual analysis for fuel cell SOH estimation 

 

4.2. Comparison of baseline control, ECMS, and ANN-ECMS   

Figures 8 and 9 illustrate the equivalent hydrogen 

consumption and power split for Case I (high FC SOH, low battery 

SOH). As shown in Table 4, the baseline RBC is with the highest 

hydrogen consumption (189.72g). The ANN-ECMS reduces 

hydrogen consumption by 31.93% (129.15g), while ECMS 

achieves the best reduction of 36.86% (119.78 g). ANN-ECMS 

closely follows ECMS and performs significantly better than RBC, 

demonstrating its efficiency in adapting to SOH variations while 

optimizing power distribution. 

 
Fig. 8   Equivalent Hydrogen consumption of case I 
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Fig. 9   Power Split of case I  

Similarly, Figures 10 and 11 present results for Case II (low 

FC SOH, high battery SOH). As shown in Table 5, ANN-ECMS 

continues to follow ECMS closely, achieving a 31.85% reduction 

in hydrogen consumption, while ECMS reaches 39.22%, both 

significantly better than that of RBC. These results confirm that 

ECMS and ANN-ECMS provide major fuel efficiency 

improvements, with ANN-ECMS serving as a more adaptive and 

practical alternative to ECMS by integrating SOH considerations 

into energy management. 

 
Fig. 10   Equivalent Hydrogen consumption of case II 

 
Fig. 11   Power Split of case II 

Table 4 Equivalent hydrogen consumption/improvement  

Case I  
Equivalent hydrogen 

consumption (g) 

Improvement 

(%) 

RB   

ANN-ECMS 

189.72 

129.15 

-- 

31.92% 

ECMS  119.78 36.86% 

 

Table 5 Equivalent hydrogen consumption/improvement  

Case II  
Equivalent hydrogen 

consumption (g) 

Improvement 

(%) 

RB   

ANN-ECMS 

187.83 

128.00 

-- 

31.85% 

ECMS  114.16 39.22% 

5. CONCLUSIONS 

This study implemented an online optimal control strategy 

using ECMS for fuel cell electric vehicles. The key contributions 

are summarized as follows: 

(1) Design and define both SOH estimators for fuel cells and 

lithium batteries: 

We defined SOH estimators for fuel cells and lithium batteries, 

using voltage degradation for fuel cells and capacity performance 

for lithium batteries to ensure accurate and efficient health 

monitoring. 

(2) Four-mode rule-based control: 

The four-mode rule-based control operates in high-speed mode, 

hybrid mode, low-speed mode, and battery charge mode, 

depending on the vehicle velocity and battery SOC. It determines 

two key outputs: the required fuel cell power and battery power. 

(3) Hydrogen consumption improvement of ANN-ECMS/ECMS 

with SOH: 

The results indicate that different battery health levels affect 

energy distribution. The EMS distributes power to extend the 

lifespan of both the fuel cell and the lithium battery and improve 

approximately 30 to 40% of equivalent hydrogen consumption.  
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