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ABSTRACT: Not all Li-on cells have the same material properties, and the electrochemical cell model parameters (based on the DFN or 

P2D approach) cannot be used universally in different cells. The cell model must be calibrated before being scaled to a complete pack 

level for vehicle simulation. This work presents an approach to optimize the electrochemical NCA/Gr.-SiOx Li-ion cell model under 

transient driving cycles. The cell data is scaled from a dual-motor, long-range Tesla Model Y experiment with a 75-kWh battery (Panasonic 

21700 format cell). Multiple thermocouples were installed on the battery packs to measure brick-to-brick, module-to-module temperature 

for average data. Battery voltage, state-of-charge, and cooling data were recorded using OBD data. A total of 42 P2D cell parameters were 

reduced to 26 parameters using the Morris Method (aka Elementary Effect Method); then, the 26 parameters were optimized using the 

Genetic Algorithm optimization. Using the optimized 26 cell parameters, the cell and pack models could reasonably reproduce voltage, 

SOC, and temperature well under constant speed, WLTC, and FTP-HWFET cycles in winter and summer driving.  
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1. INTRODUCTION 

Different battery electric vehicles (BEV) use different cell 

chemistries and material properties for the electrode and 

electrolyte [1]. In model-based development (MBD), the lithium-

ion battery cell is modeled using Doyle Fuller Newman (DFN) 

theory based on the pseudo-2D (P2D) approach. Some researchers 

[2-3] reported that the DFN parameters range from 16-88 

parameters. The numerous P2D parameters are a challenge 

regarding model identification and parameter optimization. The 

battery cell makers produce cells using different electrodes and 

electrolytes with different properties, the DFN parameters are also 

different for geometric, transport, and kinetic parameters [4]. 

Moreover, these cell parameters vary from cell to cell, depending 

on their manufacturers. Consequently, the P2D parameters cannot 

be transferred from cell to cell [1]. This proves to be a challenge 

for battery cell modeling before it can be scaled up to several 

thousand cells in a high-voltage pack.  

While black-box models such as equivalent circuit models 

(ECM) and machine learning (ML) are promising models for 

vehicle simulation, the ECM relies on previous data to predict 

future cell responses (current, potential, and charge-discharge 

data). The ML models are fast but require large training data, and 

they do not provide insights into cell responses under different cell 

chemistry and operating conditions [5].  

In addition, most of the previous studies have provided P2D 

parameter identification and optimizations using cell data from 

testing chambers. These experimental data do not account for the 

impact of actual vehicle thermal management systems (VTMS). 

Therefore, it is essential to consider the cell response (voltage, 

SOC, temperature) due to the influence of a cooling system of the 

VTMS. These limitations are investigated in this work. The 

present investigation utilizes experimental data from a mass-

production BEV (Tesla Model Y, long-range, dual motors) 

equipped with a 75 kWh Li-ion battery (LIB) pack. The LIB pack 

consists of 4416 cells and is equipped with an octovalve VTMS. 

The vehicle experiments are performed at a constant speed, as well 

as WLTC driving tests. Experimental and Li-ion P2D cell 

modeling procedures are reported.  

 

2. Research Methods 

2.1. Battery electric vehicle experimental procedures 

In this work, the Tesla Model Y, a long-range, dual-motor with 

a 75-kWh LIB pack, was used in the authors' experimental test 

facility, as shown in Figure 1 [6]. The vehicle is equipped with an 

octovalve VTMS using egl50 as a coolant. 80 thermocouples are 

installed on various modules and battery bricks for temperature 

distribution measurement. Battery pack inlet/outlet pressure and 

coolant flow rate are measured for a complete pack with cooling 

system model development. Figure 2 shows the complete pack 
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model with battery thermal management system (BTMS) and 

modeled heat transfer characteristics from cell to coolant, coolant 

pipe wall, pack tray, air gap, and pack case.  Table 1 lists baseline 

vehicle specifications. The 75-kWh LIB pack (96s46p) has 4416 

cylindrical cells arranged into four modules.   

 

Table 1. Base specification of the BEV and its battery [7] 

Tesla Model Y, Year 2020, dual motors 

Vehicle weight 2000 kg 

Coolant  EGL 50 

Battery  75 kWh 

Battery cell Panasonic 21700 format 

Cell specification 21 x 71 mm 

Electrodes NCA/Gr.SiOx-C 

 

Table 2. Experimental condition for model validation 

Case Cycle Tc, oC Ta, oC SOC, % 

1 WLTC × 3 26 26 36 % 

2 Constant 60 km/h -9 -11 83.5 

3 (FTP+HWFET)× 2 41 30 46.3 

 

The battery cell is Panasonic 21700 (cell diameter 21 mm, cell 

height 70 mm) cylindrical format with NCA cathode and Graphite-

SiOx anode.  Table 2 lists the vehicle test conditions for model 

development and validation. Case 1 is test under repeated WTLC 

x 3 for an initial SOC = 36%. The test was conducted at the 

ambient air temperature Ta equal to the cell temperature Tc at 26 
oC. Pack performance data (voltage and current) are scaled to a 

cell level for cell model development and parameter identification 

to speed up the simulation time. Once the cell parameters are 

identified and optimized, they are used in the pack model. Case 2 

presents the test and validating conditions under a fixed 60 km/h 

driving under extreme weather (Tc = - 9 degC, Ta = -11 degC, 

SOC = 83.5%) [7]. Case 2 is considered as cell heating since Ta < 

Tc.  Case 3 (2 times repeated FTP+HWFET cycle) is assumed as 

the battery cooling since Ta = 30 degC < Tc = 41 degC. Hotter Tc 

than Ta is assumed to be the condition in which the 2nd vehicle 

trip starts after the 1st trip at a certain stop time.   Cases 1-3 are 

chosen to ensure the cell model parameterizations can be used at 

the pack level without modifications, and the cell and pack 

modeling methods are valid for constant and transient vehicle 

speeds under winter and summer driving.

 

 
 

Figure 1. Vehicle testbench at Waseda University, and thermocouple setup for temperature measurement 
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Figure 2. Overview of pack model with cooling system (left) and modeled heat transfer characteristics from cell to ambient (right) 

 
Figure 3. P2D electrochemical cell model overview [8] 

 

2.2. P2D cell model, global sensitivity analysis using Morris 

Method and cell parameterization using Genetic Algorithm  

 

Figure 3 shows an overview of the P2D cell model. The 

details of the modeling theory and its derivations can be found 

in [4]. For the sake of brevity, detailed cell modeling is not 

included in this paper. An expanded modeling theory for the 

P2D cell model can be found in a previous work of the authors 

[8]. The Elementary Effect (EE) or Morris Method [9] is utilized 

to rank the most and least essential parameters out of 42 P2D 

cell parameters, as listed in Table 3. These parameters are 

classified as cathode, anode, electrolyte, and other categories. 

The parameter boundaries are taken from literature studies and 

initial guesses [1, 10-13]. Once the most and least essential 

parameters are identified, 16 parameters are left out due to their 

low standard deviations. Parameters with high standard 

deviations are 26 parameters and are further optimized using a 

Genetic Algorithm. An overview of the GA parameter 

optimization is shown in Figure 4.  

Figure 5 overviews the experimental results of Case 1 (Ta = 

Tc = 26 degC, initial SOC = 36%, WLTCx3). The pack current 

and voltage are scaled to a cell level for the model validation. 

The cell operating conditions are 4.24 V (open circuit voltage at 

100% SOC) and 2.319 V (open circuit voltage at 0% SOC). 

Initial SOC and scaled cell current requests are initialized as 

model inputs. Once the model is well calibrated in Case 1 using 

the cell model parameterization in Section 2.2, the same P2D 

parameters are used to validate Cases 2-3 at the pack level. This 

method ensures model consistency at the cell and pack under 

steady and transient driving cycles at hot and cold temperatures. 

 

 
Figure 4. Genetic algorithm optimization for 26 parameters.  
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Table 3. A total of 42 P2D cell parameters for global sensitivity analysis and GA-optimization 

No.  Parameters  Unit Definition Boundaries 
1 

C
at

ho
de

 

𝐿𝐿𝑝𝑝 micron Cathode thickness 60 – 95 
2 𝑟𝑟𝑝𝑝 micron Cathode particle Size 3 – 12 
3 𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑝𝑝 micron Cathode foil thickness 10 – 20 
4 𝐷𝐷𝑠𝑠,𝑝𝑝  - Cathode solid diffusion multiplier 0.7 – 1.2 
5 𝑖𝑖0,𝑝𝑝  - Cathode ECD multiplier 0.7 – 1.2 
6 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑,𝑝𝑝  - Cathode OCP entropic heat multiplier 0.7 – 1.2 
7 𝜎𝜎𝑝𝑝 S/m Cathode conductivity 90 – 120 
8 𝑞𝑞𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 mAh/g Cathode first charge capacity 150 – 200 
9 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝 V Open circuit potential of cathode 3.9 – 4.2 

10 𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑝𝑝 nm Cathode’s initial film thickness 1.0 – 2.5 
11 𝜌𝜌𝑝𝑝 g/cm3 Conductive agent density of cathode 1.8 – 2.1 
12 𝜌𝜌𝑏𝑏,𝑝𝑝 g/cm3 Cathode binder density 1.5 – 2.0 
13 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝 m2.5/mol0.5s User kinetic rate constant of cathode 9.6e-11 – 9.6e-10 
14 𝐷𝐷𝑠𝑠,𝑝𝑝 m2/s Solid diffusivity of cathode 2e-14  –  2e-13 
15 

A
no

de
 

𝐿𝐿𝑛𝑛 micron Anode thickness 60 – 95 
16 𝑟𝑟𝐺𝐺𝐺𝐺.,𝑛𝑛 micron Particle size of Gr.-anode 15 – 20 
17 𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑛𝑛 micron Particle size of SiOx anode 8 – 12 
18 𝜎𝜎𝑛𝑛 S/m Anode conductivity 90 – 110 
19 𝑖𝑖0,𝑛𝑛  - Anode ECD multiplier 0.7 – 1.2 
20 𝐷𝐷𝑠𝑠,𝑛𝑛  - Anode solid diffusion multiplier 0.7 – 1.5 
21 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑,𝑛𝑛   Anode OCP entropic heat multiplier 0.7 – 1.2 
22 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚,𝑛𝑛 V Anode OCP 1.8 – 2.1 
23 𝑞𝑞𝑓𝑓𝑓𝑓𝑓𝑓𝐺𝐺𝐺𝐺.  mAh/g First charge capacity of Gr. anode 1600 – 1760 
24 𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛 nm Initial film thickness of anode 2 – 5 
25 𝑞𝑞𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 mAh/g First charge capacity of anode SiOx 1600 – 1760 
26 𝑞𝑞𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 mAh/g First discharge capacity of anode SiOx 1400 – 1600 
27 𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆 fraction Active material #1 Mass Fraction of SiOx 0.005 – 0.04 
28 𝐸𝐸𝐷𝐷,𝑆𝑆𝑆𝑆𝑆𝑆 kJ/mol Activation energy of SiO anode, , D: 

solid diffusivity 
5.0 – 16.55 

29 𝐸𝐸𝑎𝑎,𝑆𝑆𝑆𝑆𝑆𝑆 kJ/mol Activation energy_ECD for SiOx anode 5.0 – 12.85 
30 𝐷𝐷𝑠𝑠,𝐺𝐺𝐺𝐺. m2/s Solid diffusivity of Gr. anode 1e-14 – 1e-13 
31 𝐷𝐷𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆 m2/s Solid diffusivity of SiOx anode 8.09e-15 – 8.09e-

14 
32 

el
ec

tro
ly

te
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑘𝑘𝑒𝑒  - Electrolyte ionic conductivity multiplier 0.7 – 1.2 
33 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝐷𝐷𝑒𝑒  - Electrolyte diffusional conductivity 

multiplier 
0.7 – 1.2 

34 𝑘𝑘𝐷𝐷
𝑒𝑒𝑒𝑒𝑒𝑒   - Electrolyte ionic diffusivity multiplier 0.7 – 1.2 

35 𝑐𝑐𝑒𝑒  mol/m3 Electrolyte concentration 1100 – 1300 
36 𝜌𝜌𝑒𝑒  g/cm3 Electrolyte density 1.1 – 1.3 
37 𝜀𝜀𝑒𝑒  - Electrolyte volume fraction 0.5 – 0.8 
38 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡+0   - Transference number multiplier of 

electrolyte 
0.2 – 0.4 

39 

O
th

er
 

𝐿𝐿𝑠𝑠 micron Separator thickness 10 – 20 
40 𝜀𝜀𝑚𝑚  - Membrane porosity 0.2 – 0.6 
41 𝑅𝑅𝑐𝑐 Ohm-m2 Contact resistance (@ SEI film and 

anode/foil and cathode/foil interfaces) 
1.0e-5 – 8.58e-4 

42 ℎ W/(m2-K) Convective heat transfer coefficient 1 – 10 
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Figure 5. Voltage, temperature, SOC under WLTCx3, ambient temperature Ta = cell temperature Tc = 26 oC, SOCi = 36% 

 

 
Figure 6. Overview of the complete pack with cooling system model. 

 

2.3. Pack model with cooling system model overview  

Figure 6 presents an overview of the total pack model with its 

cooling system. Modules 1 and 4 have 23 bricks, while Modules 

2-3 have 25 bricks. Each brick has 46 cells connected in parallel.  

The model consists of 4416 Li-ion cells with multiple thousands 

of flow channels and pipe bends. As shown in Figure 6, each 

pack contains 7 coolant lines, each with 28 flow channels. Heat 

transfer characteristics are modeled from cell to coolant, pipe 

wall, tray, air gap, and pack case to capture the dynamic 

temperature of the coolant outlet from the LIB pack.  

 

4. Results and discussion  

4.1 Cell response validation 

Figure 7 shows the validations of the cell model responses, such 

as terminal voltage, temperature, and SOC. Using the Morris 

Method to identify the most and least important P2D parameters 

before GA optimization is suitable for validating the battery 

model using the electrochemical approach (P2D or DFN model). 

The result shows that the cell voltage, temperature, and SOC are 

sufficiently validated with over 90% accuracy.  
 

Figure 7. Cell response validation for Case 1 (Ta = Tc = 26 

degC, 36% SOC, WLTC x 3) 

 
  

  
  

  
  

  
  
 

  
  

  
   

  

  
  

  
  

 

                                     

               
               

                                                      
                                  

 

 

 

 
           

                                                                 

         

               

  
  
  
 
 
 
 

             

  
   

  
   

         

                  

                                        

   

   

   

   

   

             

  
    

   
  

  
  

         

  

  

  

             

  
    
  

  
   
 

         

  

  

  

  

             

  
  

  

         

 

  

  

  

   

             

  
   

   
  

  
  
  

  

      

     

        
   



EVTeC 2025 
7th International Electric Vehicle Technology Conference 2025 

Copyright © 2025 Society of Automotive Engineers of Japan, Inc. 
 

  
Figure 8. Pack + cooling system model validations (pressure drop, 

outlet temperature, voltage, SOC) for Case 2 (60 km/h, Ta = -11 

degC, Tc = -9 degC, SOC = 83.5%) 

Figure 9. Pack + cooling system model validations (pressure drop, 

outlet temperature, voltage, SOC) for Case 3 (FTP + HWFET x 2, 

Tc = 41 degC, Ta = 30 degC, SOC = 83.5%) 

 

4.2 Pack response validations in winter and summer tests 

    Optimized P2D cell parameters from Case 1 are utilized in 

the pack model validations in Cases 2-3. It is noted that the pack 

model includes all cells with their cooling system, pipe bend, 

and heat transfer characteristics from cell-ambient (via coolant, 

coolant pipe wall, tray, air gap, and pack case). Each model has 

7 coolant flow channels, allowing egl50 to pass through 23-25 

battery bricks, as depicted in Figure 2. The battery pack 

benchmark data were taken from a third-party cost analysis 

report [14], while detailed specifications of the battery pack with 

its battery thermal management system were based on previous 

works of the authors [6-8]. It can be seen in Figure 8 that the 

pack model with optimized P2D parameters is valid for sub-

negative temperatures driving at 60 km/h. Reasonable LIB pack 

pressure drop, coolant temperature at pack outlet, pack voltage, 

and SOC are reasonably reproduced. At t = 0 – 1000 sec, 

predicted thermal and electrical performances of the battery 

pack are underestimated because this time is used for battery 

pre-conditioning to reach a desired temperature by changing the 

current request or vehicle speed. This vehicle test is considered 

a cell heating mode. The measurement started once the Tc 

reaches -9 °C (from Ta = -11 °C).  Overall, the thermal, 

electrical, and pressure drop performances of the complete pack 

model with its BMTS are well captured even under negative 

temperature driving. The following section shows a model 

validated under repeated transient driving to prove that the pack 

+ BTMS model is valid under transient conditions.  

    Figure 9 shows the pack model validation for Case 3, in which 

the test is repeated 2 times under the combined Federal Test 

Procedure (FTP) and EPA Highway Fuel Economy Test Cycle 
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(HWFET) at Tc = 41 °C, Ta = 30 °C, and SOC = 83.5%. This 

test condition is assumed to be a cell cooling mode since Tc > 

Ta, considering the 2nd vehicle trip starts after the 1st trip while 

the battery pack is still hot. Pack pressure drop, outlet coolant 

temperature, pack terminal voltage, and SOC are well 

reproduced.  

 

The results in Cases 1-3 conclude that the cell parameter 

identification using the Morris Method (aka Elementary Effect 

Method) combined with the GA-optimization are valid for hot 

(26 degC and 30 degC) and cold (-11 degC) driving conditions. 

Considering pipe bends, friction losses, and heat transfer 

characteristics from cell to ambient, the complete pack model 

could capture the thermal and electrical performance of the 75-

kWh battery pack. This complete pack model can be a 

benchmark model for a vehicle-level simulation to develop an 

advanced thermal management system.  

 

5. Conclusion 

   An accurate prediction of cell responses (voltage, temperature, 

SOC) was obtained using a systematic optimization approach 

under constant speed, WLTC, and FTP+HWFET driving cycles. 

The cell model can be scaled to a LIB pack using the same P2D 

parameters. The cell model parameterization based on the 

Morris Method (aka Elementary Effect Method) combined with 

the genetic algorithm optimization is effective in predicting cell 

response (SOC, voltage, temperature) under a transient driving 

cycle.  

   The cell parameters are used in a pack model considering pipe 

friction due to pipe bends, detailed geometric specifications, 

coolant properties, and heat transfer between cells and the 

ambient. The developed pack model with a complete battery 

cooling system is reasonably validated under winter (-11 °C) 

and summer (26 – 30 °C) test data. This pack model can be used 

as a benchmark platform for vehicle-level simulation. The 

model can be used to test various cooling strategies and 

advanced thermal management systems.  

  One shortcoming of this work is the CPU time since the model 

has several thousand cells and pipe bends, which could be a 

challenge when the model is integrated with a vehicle model. A 

data-driven or neural network model will soon be developed to 

speed up the simulation time. A digital twin simulation model 

can be developed by combining a data-driven pack model and 

driving-aware vehicle speed and road conditions data from GPS.  

 

ACKNOWLEDGMENT 

This work received financial and technical support from an 

undisclosed OEM partner. We thank our former graduate 

students for their modeling and experimental help - Mr. Kentaro 

Kishida and Kamaleshwar Nandagopal, both now in Toyota 

Motor Corporation, Mr. Yunkui Ma (now in Mercedez Benz 

Group China), and Mr. Enbo Cui (now in AESC).  

 

REFERENCES 

(1) Chen C. H., Planella F.B, O’Regan K., Gastol D., Widanag 

W. D., Kendrick E. Development of Experimental 

Techniques for Parameterization of Multi-scale Lithium-ion 

Battery Models. J. Electrochem. Soc. 167 080534. 

https://doi.org/10.1149/1945-7111/ab9050    

(2) Forman, J. C., Moura, S. J., Stein, J. L., & Fathy, H. K. 

(2012). Genetic identification and fisher identifiability 

analysis of the Doyle–Fuller–Newman model from 

experimental cycling of a LiFePO4 cell. Journal of Power 

Sources, 210, 263-275. 

https://doi.org/10.1016/j.jpowsour.2012.03.009  

(3) Fan, G. (2020). Systematic parameter identification of a 

control-oriented electrochemical battery model and its 

application for state of charge estimation at various 

operating conditions. Journal of Power Sources, 470, 

228153. https://doi.org/10.1016/j.jpowsour.2020.228153   

(4) Newman J., Thomas-Alyea K. E. Electrochemical Systems, 

3rd Edition. Wiley 2004. 

(5)  Li, W., Demir, I., Cao, D., Jöst, D., Ringbeck, F., Junker, 

M., & Sauer, D. U. (2021). Data-driven systematic 

parameter identification of an electrochemical model for 

lithium-ion batteries with artificial intelligence. Energy 

Storage Materials, 44, 557-570. 

https://doi.org/10.1016/j.ensm.2021.10.023   

(6)  Sok, R., Kishida, K., Otake, T., Nandagopal, K. et al., "A 

Methodology to Develop and Validate a 75-kWh Battery 

Pack Model with Its Cooling System under a Real Driving 

Cycle," SAE Technical Paper 2024-37-0012, 2024, 

https://doi.org/10.4271/2024-37-0012. 

(7) Ma, Y., Sok, R., Cui, E., Kishida, K. et al., "Development 

and Validation of a Battery Thermal Management Model for 

Electric Vehicles under Cold Driving," SAE Technical 

Paper 2023-01-1610, 2023, https://doi.org/10.4271/2023-

01-1610  

(7) Kishida, K. and Sok, R. et al. A Digital-Twin Simulation on 

Battery Eco-Cooling to Improve the Energy Consumption 



EVTeC 2025 
7th International Electric Vehicle Technology Conference 2025 
 

Copyright © 2025 Society of Automotive Engineers of Japan, Inc. 

of Electric Vehicles Under Transient Driving Cycle and 

GPS Mission Profiles. Preprint: 

http://dx.doi.org/10.2139/ssrn.4902996  

(8) Sok, R and Kusaka, J, Global Sensitivity Analysis on 

Parameter Identifications of Electrochemical Li-Ion Cell 

Model Using Transient Test Data Scaled from Battery 

Electric Vehicle Experiments. Preprint at 

http://dx.doi.org/10.2139/ssrn.5027287 

(9) Morris, M. D. (1991). "Factorial Sampling Plans for 

Preliminary Computational Experiments". Technometrics. 

33 (2). Taylor & Francis: 161–174. 

https://doi.org/doi:10.2307/1269043 

(10) Pan, K., Zou, F., Canova, M., Zhu, Y., & Kim, J. (2019). 

Systematic electrochemical characterizations of Si and SiO 

anodes for high-capacity Li-Ion batteries. Journal of Power 

Sources, 413, 20-28. 

https://doi.org/10.1016/j.jpowsour.2018.12.010  

(11) O'Regan, K., Brosa Planella, F., Widanage, W. D., & 

Kendrick, E. (2022). Thermal-electrochemical parameters 

of a high energy lithium-ion cylindrical battery. 

Electrochimica Acta, 425, 140700. 

https://doi.org/10.1016/j.electacta.2022.140700 

(12) Zulke A., Korotkin I., Foster J M., Nagarathinam M., 

Hoster H., Richardson G. (2021). Parametrisation and Use 

of a Predictive DFN Model for a High-Energy NCA/Gr-

SiOx Battery. J. Electrochem. Soc. 168 120522. 

https://doi.org/10.1149/1945-7111/ac3e4a 

(13) Landesfeind J, Gasteiger H A. Temperature and 

Concentration Dependence of the Ionic Transport Properties 

of Lithium-Ion Battery Electrolytes. J. Electrochem. Soc. 

166 A3079. https://doi.org/10.1149/2.0571912jes  

(14) Munro & Associates, Inc., “2020 Tesla Model Y Cost 

Analysis Zone 4: Powertrain & Battery Pack”, 2020 

 

 

 

 

 

 

 

 

 

 

 

 

Nomenclatures 

BTMS: Battery thermal management system 

EPA: Environmental Protection Agency 

VTMS: Vehicle thermal management system 

Ta: ambient temperature 

Tc: Cell temperature 

P2D: Pseudo 2-dimensional 

DFN: Doyle-Fuller-Newman 

NCA: Nickel Cobalt Aluminum 

Gr-SiOx: Graphite – Silicon Oxide 

GA: Genetic algorithm 

SOC: State of charge 

WLTC: Worldwide Harmonized Light vehicles Test Cycle 

FTP: Federal Test Procedure 

HWFET: Highway Fuel Economy Test Cycle 

 


